

IMMEDIATE RESPONSE ACTION PLAN Status Report 8

Barnstable Municipal Airport Hyannis, Massachusetts

RTN 4-26347

October 2020

IMMEDIATE RESPONSE ACTION PLAN STATUS REPORT 8 BARNSTABLE MUNICIPAL AIRPORT HYANNIS, MASSACHUSETTS RTN 4-26347

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	SUMMARY OF IRA PLAN AND IRA MODIFICATION	1
	Background	2
4.0	HISTORIC FIELD INVESTIGATIONS	4
5.0	FIELD INVESTIGATIONS CONDUCTED DURING THE CURRENT REPORTING PERIOD	7
6.0	IRA MODIFICATION ACTIVITIES CONDUCTED DURING THE CURRENT	
	REPORTING PERIOD	8
7.0	BI-ANNAUL CAP INSPECTION AND ENVIRONMENTAL MONITORING	10
8.0	GROUND WATER MODELING AND CONTAMINANT TRANSPORT ANALYSIS	11
9.0	MANAGEMENT OF REMEDIAL WASTE	11
10.0	UPGRADES TO AFFF TESTING PROTOCOLS AT THE AIRPORT	11
11.0	PLANS FOR NEXT REPORTING PERIOD	11
2- 3-	USGS Locus ARFF/SRE and Deployment Area Soil Sample Locations PFAS Groundwater Sampling Locations 1,4-Dioxane Results in Groundwater	
TABLE		
1-	Groundwater and Surface Water Results For PFAS	

- 2- 1,4-Dioxane Results In Groundwater
- 3- Soil Results for PFAS
- 4- Ratio of Stable Isotopes Oxygen –18 and Hydrogen-2
- 5- Fire Truck Spray Water Results for PFAS Compounds

APPENDICES

Appendix A: Final HYA Soil Capping & Drainage for Per- and Poly-Fluoroalkyl Substances

Mitigation Plan Set

Appendix B: Laboratory Analysis Reports

APPENDICES (Continued)

Appendix C: Construction Worker Short Form

Appendix D: Photographic Documentation of Cap Area

1.0 INTRODUCTION

The Horsley Witten Group, Inc. (HW) has been retained by the Barnstable Municipal Airport (the "Airport") to develop this eighth Immediate Response Action (IRA) Plan Status Report for its property at 480 Barnstable Road, Hyannis, Massachusetts (Figure 1). HW has prepared this report in accordance with the Massachusetts Contingency Plan 310 CMR 40.0000 (MCP) on behalf of:

Ms. Katie Servis, Airport Manager Barnstable Municipal Airport Hyannis, Massachusetts 02601 (508) 775-2020

The report describes IRA related activities conducted between May 2020 and October 2020.

2.0 SUMMARY OF IRA PLAN AND IRA MODIFICATION

An IRA was initiated in response to a Notice of Responsibility (NOR) for Release Tracking Number (RTN) 4-26347 dated November 10, 2016, issued to the Airport by the Massachusetts Department of Environmental Protection (MassDEP). The NOR requested that the Airport conduct additional field investigations to evaluate:

- The source(s) of Per- and Poly-Fluoroalkyl Substances (PFAS) including perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) previously detected in groundwater at the Airport and several adjacent properties;
- The source(s) of 1,4-dioxane, previously detected in a monitoring well downgradient of the Airport on the Maher wellfield property; and
- To identify potential impacts to public water supply wells operated by the Hyannis Water District at the Mary Dunn and Maher wellfields.

A proposed IRA plan was submitted for approval in response to the NOR. Subsequently, a meeting was held by MassDEP at the Airport that included other stakeholders including the Barnstable Department of Public Works, the Hyannis Water District and Barnstable County representatives (representing the Fire Training Academy). At the meeting, IRA plans were coordinated between the Airport and Fire Training Academy including sampling locations, type of analysis, groundwater modeling, goals and next steps. The IRA plan served as the guide for the soil and groundwater testing conducted since November 2016 to follow up on the results of the previous analyses.

In June 2019, the MassDEP issued a Request for Modified Immediate Response Action Plan/Interim Deadline dated June 18, 2019 (the "Modified IRA Request") to the Airport. The Modified IRA Request asked that the Airport propose response actions to "reduce infiltration of precipitation through PFAS-impacted soil, such as temporarily capping the source areas; excavating and properly disposing of the PFAS-impacted soil; or some equivalent approach".

The Airports response is documented in the report titled *Final Immediate Response Action Plan Modification*, prepared by HW and dated December 2019 (the "IRA Modification"). The IRA Modification included details for the installation of a cap in two select areas to reduce precipitation infiltration. The two areas are identified as the Deployment Area and the Airport Rescue and Fire Fighting/Snow Removal Equipment (ARFF/SRE) Building Area. The two capped areas total approximately 94,100-square feet. Design details of the caps are included in Appendix A. The capping area represents a majority of the PFAS soil impacts known at the time of IRA Modification. Areas of PFAS in soil remaining above the applicable Method 1 soil standard located outside of the caped area are indicated on Figure 2. Evaluation of these areas will be included in future response actions and/or included as part of a future risk assessment.

2.1 Background

Prior to issuance of the NOR, the Airport had conducted investigations on both 1,4-dioxane and PFAS and provided the results to MassDEP. In July 2015, HW sampled groundwater from seven groundwater monitoring wells for 1,4-dioxane. This contaminant was detected in groundwater monitoring well OW-9DD located in the Maher wellfield at a concentration of 0.926 micrograms per liter (ug/L). This concentration is above the applicable Method 1 standard of 0.30 ug/L. This groundwater monitoring well is screened from 77 to 87 feet below the ground surface.

A potential source of 1,4-dioxane at the Airport is a historic release of 1,1,1-trichloroethane (1,1,1-TCA) from an oil/water separator associated with a floor drain in the former Provincetown Boston Airlines hangar (currently leased to Cape Air). Given the screen depth of monitoring well OW-9DD, the 1,4-dioxane may also be from an off-Airport source.

On August 4, 2016, MassDEP issued a Request for Information (RFI) to the Airport requiring investigation of PFAS. On July 1 and 5, 2016, HW collected samples from six groundwater monitoring wells and submitted the samples for laboratory analysis of PFOS and PFOA. These compounds were detected in each of the wells tested. At monitoring wells HW-3 and HW-5, the sum of PFOS and PFOA were 0.0931 and 0.151 ug/L respectively, above the EPA health advisory limit and applicable MassDEP standard. PFOS and PFOA were also detected above the EPA health advisory limit and applicable MassDEP standard in monitoring well HW-1, located at the upgradient, western boundary of the Airport.

2.2 Actions Under the IRA Plan

A summary of the IRA activities conducted between May 2020 and October 2020 include:

- Installation of soil borings and groundwater monitoring wells;
- Groundwater sampling for 1,4-dioxane;
- Soil Sampling for PFAS;
- Groundwater Sampling for PFAS;

- Laboratory testing of caping materials (geomembrane liner, sand and loam) for PFAS;
 and
- Construction of caps in the Deployment Area (geomembrane cap) and ARFF Building Area (asphalt cap).

3.0 APPLICABLE MCP STANDARDS

Pursuant to 310 CMR 40.0900, the characterization of risk of harm to health, safety, public welfare, and the environment must be evaluated at each disposal site. This characterization includes the determination of site-specific soil and groundwater categories based on site location and use, and the comparison of laboratory results to these standards (310 CMR 40.0930).

In accordance with 310 CMR 40.0933, the applicable soil category is selected based upon the frequency, intensity of use, and accessibility of the Airport by adults and children. Based on these criteria, soil at the Airport is category S-1/GW-1 and S-1/GW-3.

Groundwater located within a Current Drinking Water Source Area is considered category GW-1. The Airport is located within several zones of contribution (Zone II) for Barnstable Village, the Hyannis Water District and the Town of Yarmouth. Zone IIs are considered current drinking water sources as defined in 310 CMR 40.0006; thus, category GW-1 is applicable.

Groundwater located within 30 feet of an occupied building that has an average annual depth of less than 15 feet is categorized as GW-2. This is primarily a concern because of the possibility of vapor impacts to indoor air. The average annual depth to groundwater at the Airport is greater than 15 feet; therefore GW-2 Standards do not apply. Also, all disposal sites shall be considered a potential source of discharge to surface water, and therefore categorized as GW-3. Based on these criteria, categories GW-1 and GW-3 are applicable to the Airport.

The soil and groundwater standards applicable to the Airport for PFAS and 1,4-dioxane as described in the document titled Final PFAS – Related Changes to the MCP – 2019-12-13 prepared by the MassDEP and promulgated December 27, 2019 are as follows:

	PFAS Standa	rds		
Analyto	Soil Standa	ard (ug/kg)	Groundwate	r Standard (ug/l)
Analyte	S-1/GW-1	SW-1/GW-3	GW-1	GW-3
Pefluorodecanoic Acid (PFDA)	0.3	300	N/A	40,000
Perfluoroheptanoic Acid (PFHpA)	0.5	300	N/A	40,000
Perfluorohexanesulfonic Acid (PFHxS)	0.3	300	N/A	500
Perfluorononanoic Acid (PFNA)	0.32	300	N/A	40,000

	PFAS Standa	rds		
Analyta	Soil Standa	ard (ug/kg)	Groundwate	r Standard (ug/l)
Analyte	S-1/GW-1	SW-1/GW-3	GW-1	GW-3
Perfluorooctanesulfonic Acid (PFOS)	2	300	N/A	500
Perfluorooctanoic Acid (PFOA)	0.72	300	N/A	40,000
PFAS Sum of Six*	N/A	N/A	0.02	N/A

^{*} PFAS Sum of Six is the sum of PFDA, PFHpA, PFHxS, PFNA, PFOS, and PFOA

	1,4-	dioxane	
Soil Stan	dard (ug/kg)	Groundwate	er Standard (ug/l)
S-1/GW-1	SW-1/GW-3	GW-1	GW-3
200 ug/kg	20,000 ug/kg	0.3	50,000

4.0 HISTORIC FIELD INVESTIGATIONS

Historic field investigations conducted at the Airport since the November 2016 NOR and documented in prior status reports are summarized below:

- The installation of groundwater monitoring wells at six locations in April 2017: in the vicinity of potential sources of PFAS at the ARFF Building Area, at the Deployment Area adjacent to the East Ramp and at upgradient locations to evaluate potential off-site sources of PFAS and 1,4-dioxane.
- Groundwater from the new wells was initially sampled for PFAS and 1,4-dioxane in April 2017. Additional groundwater samples and one surface water sample were collected for analysis of PFAS on June 20, 2017.
- An initial round of three soil samples were collected on December 6, 2016 as reported in the first status report. One sample was taken from each location where it was determined that aqueous film forming foam (AFFF) had been used at the Airport, including the site of an airplane crash in 1981, the Deployment Area, and the 1991 Drill Location along the dirt road adjacent to the Deployment Area.
- A second round of soil samples were collected on June 20, 2017 adjacent to the ARFF Building Area and within the Deployment Area to begin to determine the extent of PFAS within the surface soils. Based on the results of these analyses, a third round of samples from these two locations were collected on September 26, 2017. The third round of sampling was designed to further delineate the extent of PFAS in soils both horizontally

- and vertically, with samples taken at the ground surface and at two and four feet below ground surface (BGS).
- In October 2017, three composite soil samples were taken from piles of sediment and topsoil associated with the redevelopment of Runway 15/33. These piles were located on Airport property at the site of the former Mildred's Restaurant and were analyzed for PFAS compounds to evaluate if sediment removed from the Airport as part of this redevelopment contained PFAS.
- Two samples of AFFF concentrate were analyzed for PFAS compounds to evaluate the foam.
- Six PFAS soil samples were also analyzed for leaching potential using a synthetic
 precipitation leaching procedure (SPLP) test between September and October 2017.
 The chosen samples included four samples from within the boundaries of the PFAS sites
 at the Airport and two samples from runway reconstruction soils stockpiled at the
 Airport.
- On August 14, 2018, 24 PFAS surface soil samples were collected in proximity to the ARFF Building Area and the Deployment Area. PFAS compounds were previously detected in these areas and additional samples were collected to determine the vertical extent of PFAS impacts in soil and to refine the soil disposal site boundary at the Airport.
- In October 2018, three soil borings (DL11, DL14 and HW-F) were advanced in the
 Deployment Area. One soil boring (ARFF3) was advanced and one surface soil sample
 (HW-3) was collected near the ARFF Building in order to further delineate the extent of
 PFAS in soils both horizontally and vertically. All soil borings were advanced using direct
 push methods.
- In October 2018, six monitoring wells were installed at the Airport. A cluster of three wells (HW-G(s), HW-G(m), and HW-G(d)) was installed at an upgradient location to evaluate potential off-site sources of PFAS. Three additional wells (HW-H, HW-I, and HW-J) were installed southeast of the Deployment Area adjacent to the East Ramp.
- In November 2018, six groundwater samples were collected to evaluate PFAS
 concentrations in the Deployment Area. Four groundwater samples and one surface
 water sample from Mary Dunn Pond were also collected for analysis of oxygen and
 hydrogen isotopes to determine the contribution of pond water from Mary Dunn Pond
 to the four downgradient monitoring wells.
- In December 2018, two soil samples were collected from the 1991 Drill Location to determine if PFAS detected in the area are related to background conditions.
- In December 2018, 12 groundwater samples were collected for analysis of PFAS and 13 groundwater samples were collected for analysis of oxygen and hydrogen isotopes to

determine the contribution of pond water from Mary Dunn Pond to the 13 downgradient wells. Groundwater samples were also collected from four monitoring wells in the Maher Wellfield for analysis of 1,4-dioxane.

- In February 2019, three additional surface soil samples were collected to further delineate the soil Disposal Site boundary around the ARFF building.
- In May and June 2019, HW installed nine groundwater monitoring wells to delineate the vertical and horizontal extent of PFAS and 1,4-dioxane at the Airport and on adjacent hydraulically upgradient properties.
- In June 2019, eight groundwater samples were collected from newly installed groundwater monitoring wells HW-L, HW-K, HW-I (m), HW-I (d), HW-M, HW-D(d), HW-D (dd), and HW-N for PFAS.
- In July 2019, one groundwater sample was collected from the newly installed groundwater monitoring wells HW-O for PFAS. One groundwater sample was collected from HW-L for 1,4-dioxane.
- In July 2019, two surface water samples were collected from Upper Gate and Lewis Ponds for PFAS analysis.
- In August 2019, four groundwater samples were collected from monitoring wells HW-N, HW-A(d), HW-O, and HW-1 to evaluate potential sources of 1,4-dioxane entering the Airport from unknown upgradient sources(s). One groundwater sample was also collected from groundwater monitoring well HW-E for PFAS.
- In August 2019, soil sample DL 11 (0-1) was collected from the Deployment Area.
- In August 2019, six spray water samples were collected from discharge locations on a fire truck at the Airport. The samples were collected verify that the valve mechanism that controls the mixing of AFFF with water was working appropriately. PFAS should not be detected in the spray water.
- On September 27, 2019, HW collected groundwater samples from six monitoring wells located on the Airport for 1,4-dioxane analysis. To date, 1,4-dioxane has only been detected in one monitoring well (HW-L) located at the Airport. The source of the 1,4dioxane is still being evaluated to determine if it is attributable to the Airport or from an unknown off-site source.
- In November 2019, the Airport replaced the valve mechanism in the fire truck to ensure that AFFF was no longer mixing with the water despite the mechanism not being engaged. In December 2019, HW resampled the six discharge locations from the fire truck at the Airport. PFAS was not detected above the GW-1 standard in any of the samples collected.

- In December 2019, the Airport submitted an IRA Modification to MassDEP documenting the proposed PFAS cap. The IRA Modification was approved by the MassDEP in an email dated December 24, 2020.
- In March 2020, the Airport prepared the draft engineering design for the proposed caps described in the IRA Modification and included them in the April 2020 Status Report.

Soil, surface water and groundwater sampling locations are indicated on Figures 2 through 4. Tabulated soil, groundwater, surface water and spray water data are included on Tables 1 through 5. Laboratory data packages and soil boring logs associated with historic field investigations have previously been submitted to MassDEP and are available in other IRA Status Reports.

5.0 FIELD INVESTIGATIONS CONDUCTED DURING THE CURRENT REPORTING PERIOD

Details concerning field investigations conducted between May and October 2020 are summarized below.

• Between May 5th and May 21st, 2020 HW collected groundwater samples from the following monitoring wells for PFAS analysis:

HW-2	HW-I(s)	HW-H	OW-19D
HW-3	HW-I(m)	OW-9M	OW-18D
HW-K	HW-I(d)	OW-18S	HW-F
HW-D(m)	HW-E	OW-18M	HW-D(dd)

Tabulated analytical results are included on Table 1 and laboratory reports are located in Appendix B. The location of the monitoring wells is indicated on Figure 3.

• Between May 5th and May 13th, 2020 HW collected groundwater samples from the following monitoring wells for 1,4-dioxane analysis:

HW-L OW-9D OW-18D OW-19D

To date, 1,4-dioxane has only been detected in one monitoring well (HW-L) located at the Airport. The source of the 1,4-dioxane is still being evaluated to determine if it is attributable to the Airport or from an unknown off-site source. Tabulated analytical results are included on Table 2 and laboratory reports are located in Appendix B. The location of the monitoring wells is indicated on Figures 3 and 4.

• Between September 14th and September 24th, HW and Desmond Well Drilling installed 13 monitoring wells at the locations indicated on Figure 3. The monitoring wells are identified as follows:

HW-L(s) HW-L(m) HW-P(s) HW-P(d) HW-V(m)
HW-Q(s) HW-Q(d) HW-S(s) HW-S(m)

$$HW-T(s)$$
 $HW-T(m)$ $HW-R(s)$ $HW-U(d)$

In general, monitoring wells with an (s) after them indicate that a 10-foot well screen was installed five feet into the groundwater table. An (m) after the monitoring well indicates that in general, five feet of well screen was installed in 15-feet of groundwater and the riser was tremie-grouted. A (d) after the monitoring well indicates that in general, five feet of screen was installed deeper than 15 feet into the groundwater and the riser was tremie-grouted. Soil boring logs for the monitoring wells and analytical data will be included in the Phase II report due to MassDEP in November 2020 and will also be discussed in the next status report.

• Between September 14th and September 30th, 2020 HW collected the following 21 soil samples for PFAS analysis:

A5 (2-4)	A19 (0-1)	DL15(0-1)	DL20(0-1)	HW-P(m) [18-20]
A13 (0-1)	A20 (0-1)	DL16(0-1)	DL21(0-1)	
A16 (0-1)	A20 (2-4)	DL17(0-1)	DL22 (2-4)	
A17 (0-1)	A21 (0-1)	DL18(0-1)	DL23 (0-1)	
A18 (0-1)	A22 (0-1)	DL19(0-1)	HW-P(m) [8-10]	

Analytical data for soil sample A16 (0-1), A17(0-1), HW-P(m) [8-10] and HW-P(m) [18-20] are included on Table 3 and laboratory reports are located in Appendix B. The location of the soil samples is indicated on Figure 2. Analytical data for the remaining locations will be included in the Phase II report due to MassDEP in November 2020 and will also be submitted with the next status report.

6.0 IRA MODIFICATION ACTIVITIES CONDUCTED DURING THE CURRENT REPORTING PERIOD

Details concerning IRA Modification activities conducted between May 2020 and October 2020 are summarized below.

• Prior to cap construction, HW evaluated the PFAS exposure to a constructer worker at the Airport to verify the safety of the workers constructing the cap. The evaluation was completed using the MassDEP Method 3 Construction Worker Short Form and a reference dose of 5x10⁻⁶ milligrams per kilogram body weight per day (mg/kg-day). The reference dose was obtained from the MassDEP document titled *Interim Guidance on Sampling and Analysis for PFAS at Disposal Sites Regulated Under the Massachusetts Contingency Plan*, updated December 27, 2019. As a conservative measure, HW used the highest detected value of perfluoroheptanoic acid (PFHpA), perfluorohexanesulfonic acid (PFHxS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorooctane sulfonate (PFOS) and perfluorodecanoic acid (PFDA) in calculating the Hazard Index. The calculated Hazard Index is 0.06, which is substantially less than 1 indicating that the construction worker exposure scenario is at a level of no significant risk. A copy of the Method 3 Construction Worker Short Form is included in Appendix C.

Prior to cap construction, HW calculated a site-specific action level (SSAL) for dust at the
Airport using a very conservative fluorine concentration of 1,000 mg/kg. Fluorine can be
representative of various PFAS compounds. There is currently no Occupational Safety
and Health Administration (OSHA) Permissible Exposure Level (PEL) for PFAS. The
calculated SSAL was compared it to the National Ambient Air Quality Standard for PM₁₀
(150 micrograms per cubic meter, [ug/m³]). The SSAL is calculated as follows:

Contaminant Concentratio	n (mg/Kg) =	PEL of Con	<u>ıtaminant (m</u>	g/M³)	
Million Parts of Soil		Airborne Concentrati	ion Needed t	o Attain PEL	/
1000 mg/kg =		0.2 mg/m ³			
1,000,000 parts of soil	Airborne Con	ncentration Needed to	Attain PEL	/	

= 200 mg/m³ or 200,000 ug/m³

This calculation verifies that it is unlikely for exceedance of the PEL since visible dust generation is unlikely (dust mitigation has been incorporated into the cap design) and the dust concentration needed to achieve the PEL is significantly above the National Ambient Air Quality Standard of 150 ug/m³. As such, a SSAL for dust of 150 ug/m³ was established for the PFAS cap project.

- On May 11, 2020, the Airport finalized the engineering design for the caps described in the IRA Modification and put the project out for bidding consistent with the Town of Barnstable requirements. The design of the caps is documented in the plan set titled "HYA Soil Capping & Drainage for Per- and Poly-Fluoroalkyl Substances (PFAS) Mitigation Final Construction Plans" (Appendix A). The Airport provided the final design documents as an invitation to bid on the Town of Barnstable website on May 11, 2020. The cap construction contract was ultimately awarded to Cor Group consistent with the Town of Barnstable bidding requirements.
- On August 7, 2020, HW collected samples of loam and sand from the PA Landers pit located in Forestdale, Massachusetts for PFAS analysis. The purpose of the PFAS testing was to verify that the loam and sand planned for use as part of capping materials did not contain PFAS above regulatory values. Laboratory testing of the materials did not detect any PFAS analytes above the laboratory reporting limits or applicable Method 1 PFAS standards. Laboratory reports are located in Appendix B.
- On August 7, 2020, HW prepared a sample of the 30-mil geomembrane (Absolute Barrier Y30BAC) liner provided by Raven Industries (geomembrane liner supplier) for PFAS analysis. The purpose of the PFAS testing was to verify that the geomembrane liner did not contain PFAS above any regulatory limits. Laboratory testing of the material for SPLP PFAS analysis did not detect any PFAS analytes above the laboratory reporting limits or applicable Method 1 PFAS standards. Laboratory reports are located in Appendix B.

- On August 17, 2020, COR Group, the contractor awarded the PFAS cap project through the public bidding process began to mobilize the Barnstable Municipal Airport. Between August 17, 2020 and September 28, 2020, the Cor Group completed the following tasks associated with the PFAS Mitigation Cap Project:
 - Constructed the drainage system in proximity to the ARFF Building as indicated on Plan C-4, Appendix A.
 - Excavated approximately 850 cubic yards of soil from the ARFF Building Area and transported it to the Deployment Area for use in grading and shaping before placement of the geomembrane liner (Raven Industries Absolute Barrier Y30BAC). Soils were removed from the former grass area (12-inces below existing grade) adjacent to the ARFF building and from the new drainage system. At no time were soils from the grass area adjacent to the ARFF Building used to backfill areas under the asphalt or used in backfilling the drainage system.
 - o Install and compact approximately 12-inches of stone subbase followed by an approximate 4-inch thick asphalt cap in the former grass area adjacent to the ARFFF Building as indicated on Plan C-4, Appendix A.
 - Constructed the Deployment Area drainage system as indicated on Plan C-5, Appendix A.
 - Compacted and graded soil within the Deployment Area and verified that the area was free of any obstructions such as rocks or sticks before placing an additional 1.5-inches of sand.
 - o Installed the geomembrane liner in the Deployment Area as indicated on plan C-5, Appendix A.
- HW provided daily field oversight during the entire PFAS cap project and conducted dust monitoring during all intrusive activities at three locations (one upwind and two downwind). Dust monitoring was completed using Dust Track II aerosol monitors that collected 15-minute time weighted averages. At no time was the dust action level of 150 ug/m3 exceeded. Photographic documentation of the PFAS Mitigation Cap Areas is included in Appendix D.

7.0 BI-ANNAUL CAP INSPECTION AND ENVIRONMENTAL MONITORING

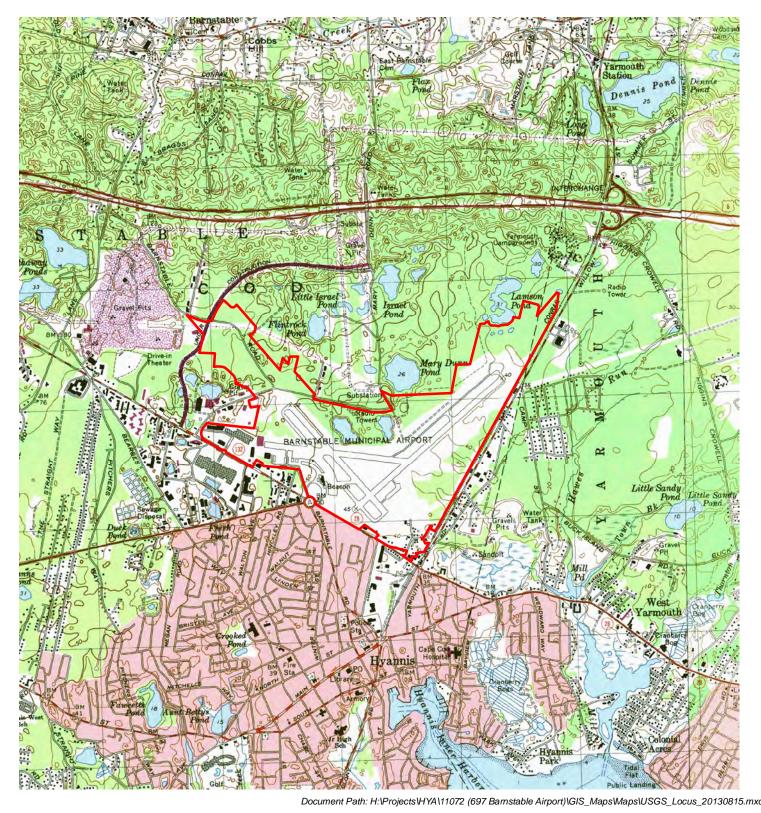
HW plans to inspect the two cap areas every six months and collect groundwater data from existing monitoring wells within proximity to the cap areas to document the effectiveness of the caps. The first cap inspection and groundwater monitoring event will take place in March 2020.

8.0 GROUNDWATER MODELING AND CONTAMINANT TRANSPORT ANALYSIS

MassDEP requested that the Airport evaluate if potential sources on the western portion of the Airport could be upgradient of the Mary Dunn Wellfield. To answer this question, HW is using and modifying an existing U.S. Geological Survey groundwater model to evaluate groundwater flow under current and recent historical pumping conditions. This work is ongoing and will be finalized in the Phase II Comprehensive Site Assessment due to MassDEP in November 2020. The model will be used to document what areas of the Airport are upgradient of the Mary Dunn Wellfield. It will also be used to evaluate groundwater flow and contaminant transport from potential source areas on Airport property, as well as groundwater flow from the Fire Training Academy across the Airport to the southeast.

9.0 MANAGEMENT OF REMEDIAL WASTE

As indicated above, approximately 850 cubic yards of PFAS impacted soil obtained from the grass area adjacent to the ARFF Building was use for grading and shaping the Deployment Area prior to placement of the geomembrane cap. Consistent with the IRA Modification, no PFAS impacted soil was transported off-site or used in any other area.

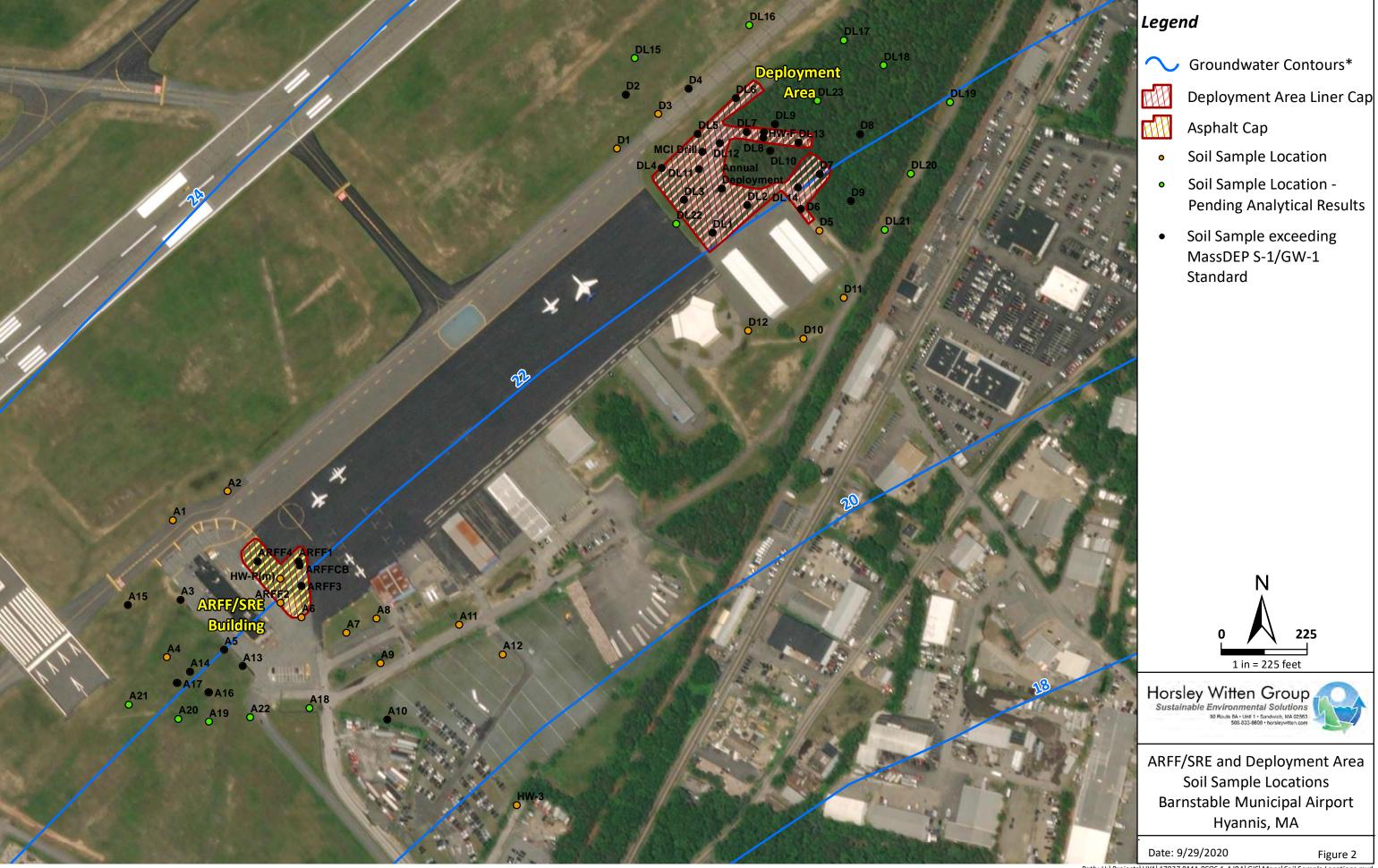

10.0 UPGRADES TO AFFF TESTING PROTOCOLS AT THE AIRPORT

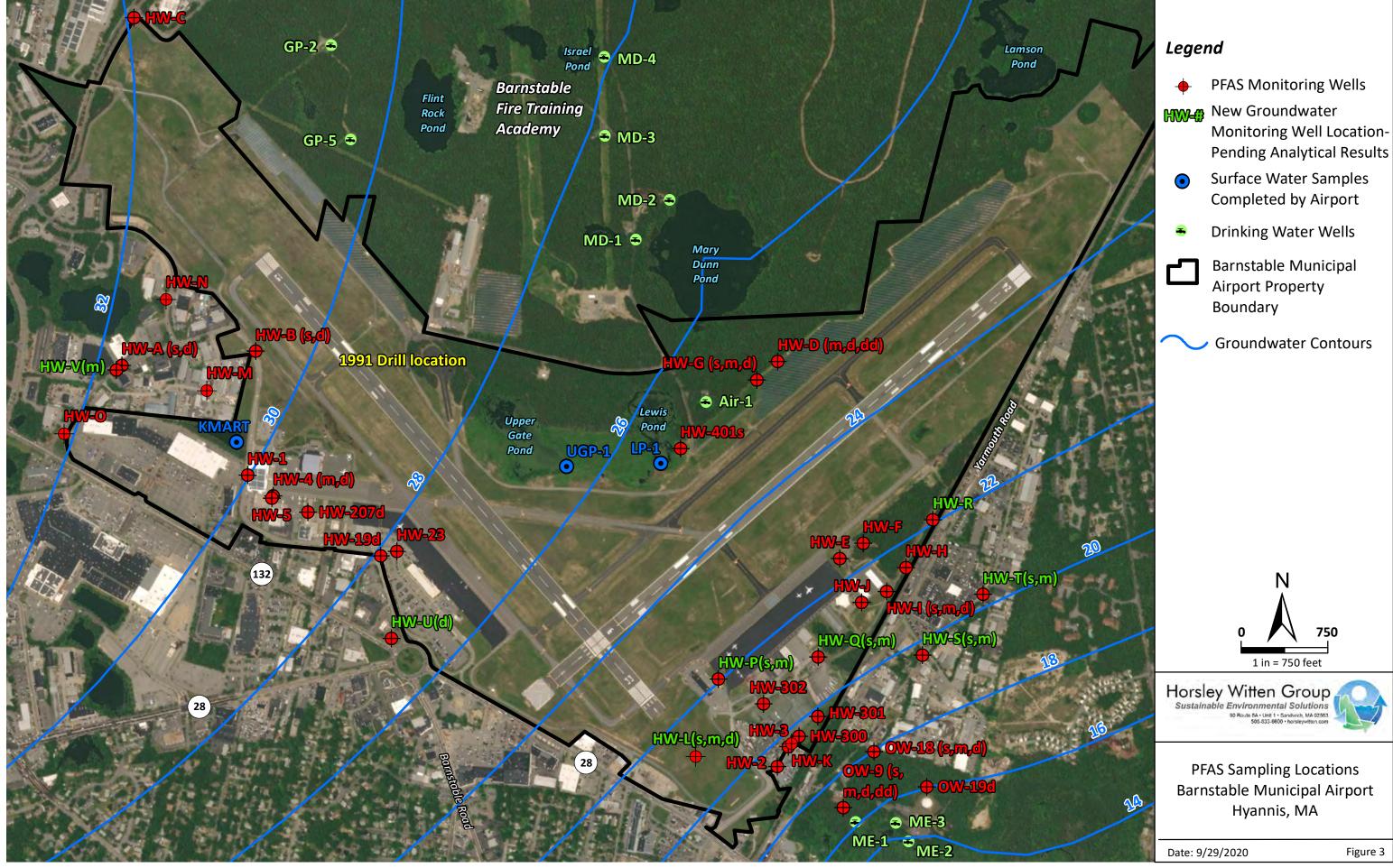
The Airport has purchased two Ecologic Foam Test Systems to allow the Airport to test the AFFF delivery systems on its fire trucks without having to discharge the foam into the environment. These new systems meet the Federal Aviation Administration requirements for the regular testing of AFFF usage. Therefore, it is anticipated that no further foam will be deployed at the Airport except during an emergency situation when its use is required.

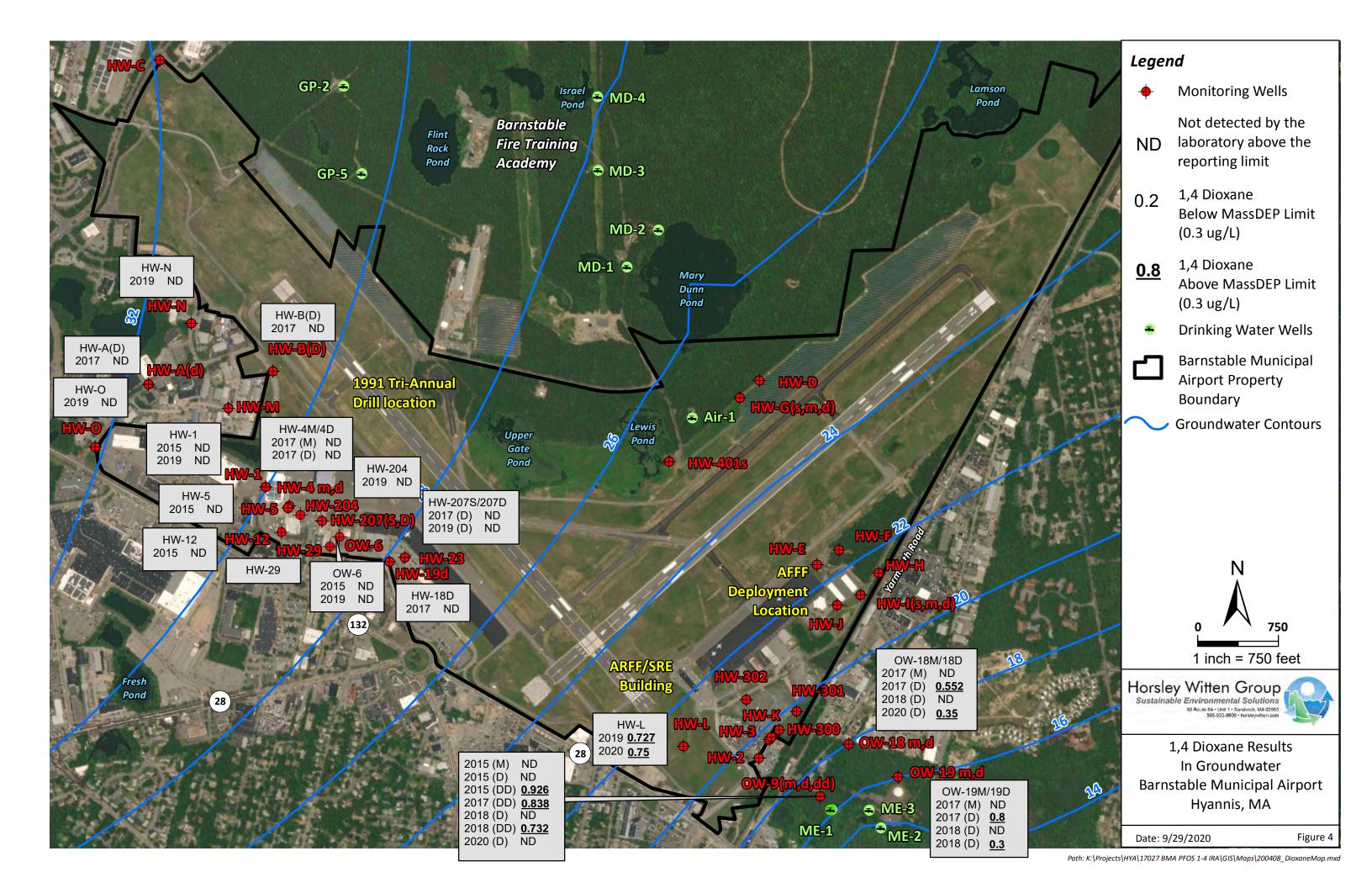
11.0 PLANS FOR NEXT REPORTING PERIOD

Further testing of soil and groundwater is planned to refine the disposal site boundaries in the Deployment Area and ARFF Building Area. Future analytical results and boring logs will be included in future status reports.

- 1- USGS Locus
- 2- ARFF/SRE and Deployment Area Soil Sample Locations
- 3- PFAS Groundwater Sampling Locations
- 4- 1,4-Dioxane Results in Groundwater


0.5





USGS Locus Barnstable Municipal Airport Hyannis, MA

Date: 4/17/2018 Figure 1

- 1- Groundwater and Surface Water Results For PFAS
- 2- 1,4-Dioxane Results In Groundwater
- 3- Soil Results for PFAS
- 4- Ratio of Stable Isotopes Oxygen –18 and Hydrogen-2
- 5- Fire Truck Spray Water Results for PFAS Compounds

Table 1	Groundwater	and Surface	Water Results	for DEAS Com	nounds ua/l

						North Ramp						Lewis Pond Area				Airport Ro	ad Area					Surface Wate	er	ARFF Building						Steamship Park	king Lot					
Sample ID	HW-1	HW-1	HW-1	HW-4M	HW-5	HW-5	HW-5	HW-23	HW-23	HW-19D	HW-19D	HW-4015	HW-A(S)	HW-B(S)	HW-B(S)	HW-B(D)	HW-M	HW-N	HW-O	HW-C	Kmart	LP-1	UGP-1	HW-L	HW-2	HW-2	HW-3	HW-3	HW-3	HW-3	HW-300	HW-301	HW-302	HW-302	HW-K	HW-K
Sample Date			10/26/2018	4/5/2017	7/1/2016	4/7/2017	10/26/2018			6/20/2017			4/7/2017	4/7/2017	10/26/2018		6/24/2019	6/24/2019	7/2/2019		1 1		7/11/19	6/19/2019	7/1/2016	5/5/2020	7/1/2016		10/26/2018		7/1/2016	7/1/2016		12/3/2018		
Depth to Groundwater	21.63	25.00	21.83	26,20	24.94	26.75	25.27	22.70	24.01	21.29	22.19	17.95	24.62	22.26	21.59	21.66	20.32	15.48	3.62	38.50	NA NA	NA NA	NA NA	19.40	27.48	25.33	25.18	25.70	26,06	23,64	22.52	25.05	23.52	22.65		20.56
Total Well Depth	30.84	30.84	30.84	32.32	27.80	27.80	27.80	28.11	28.11	41.30	41.30	23.60	32.00	30.23	30.23	57.13	26.92	22.33	14.10	42.15	NA	NA	NA	70.55	32.01	32.01	30.08	30.08	30.08	30.08	30.33	30.42	30.45	30.45	44.18	44.18
Perfluoroheptanoic acid (PFHpA)	0.01	0.0042 J	0.013 J	0.007 J	0.0041	0.0084 J	0.0074 U	0.0045J	0.0098 J	0.0052 J	0.0080 J	0.0043 J	0.0048 J	0.049	0.012 J	0.0074 U	0.007	0.0034	<0.002	0.0033 U	0.0033 U	< 0.01	<0.02	0.0078	0.0071	0.035	0.016	0.1	0.10	0.1	0.0096	0.002	0.019	0.015 J	0.0051	0.0028
Perfluorohexanesulfonic acid (PFHxS)	0.018	0.065	0.018 J	0.02	0.011	0.018 J	0.0056 U	0.021	0.023	0.046	0.045	0.011 J	0.0079 J	0.044	0.047	0.0056 U	0.016	0.033	0.0043	0.0034 U	0.0034 U	<0.01	<0.02	0.033	0.0035	0.0066	0.0043	0.020 J	0.012 J	0.0087	0.012	0.038	0.0063	0.016 J	<0.002	0.001
Perfluorononanoic acid (PFNA)	< 0.002	0.0057 J	0.0087 U	0.0046 U	< 0.002	0.0046 U	0.0088 J	0.0038 U	0.0087 U	0.0065 J	0.0087 U	0.0046 U	0.0046 U	0.0046 U	0.0087 U	0.0087 U	< 0.002	< 0.002	< 0.002	0.0046 U	0.0043 J	< 0.01	< 0.02	0.0033	< 0.002	0.016	0.0063	0.027	0.023	0.021	< 0.002	< 0.002	0.054	0.0097 J	<0.002	0.0012
Perfluorooctanoic acid (PFOA)	0.017	0.022	0.031	0.011 J	0.12	0.020 J	0.011 J	0.0046 U	0.011 J	0.017 J	0.014 J	0.0046 U	0.0026 U	0.0094 J	0.020 J	0.012 J	0.027	0.0088	0.0039	0.0026 U	0.0026 U	< 0.01	< 0.02	0.025	0.012	0.039	0.084	0.065	0.057	0.054	0.017	0.011	0.014	0.03	0.0041	0.0019
Perfluorooctane sulfonate (PFOS)	0.033	0.24	0.028	0.043	0.031	0.052	0.12	0.0079 J	0.015 J	0.061	0.069	0.012 J	0.0046 U	0.026	0.019 J	0.010 J	0.0074	0.004	0.017	0.0046 U	0.0046 U	< 0.01	< 0.02	0.049	0.0063	0.053	0.0091	0.15	0.053	0.1	0.0052	0.0037	0.033	0.031	<0.002	0.0016
Perfluorodecanoic Acid (PFDA)	NA	0.0040 U	0.0061 U	0.0040 U	NA	0.0040 U	0.0061 U	0.0040 U	0.0061 U	0.0040 U	0.0061 U	0.0040 U	0.0040 U	0.0040 U	0.0061 U	0.0061 U	< 0.002	< 0.002	0.0021	0.0040 U	0.0040 U	< 0.01	< 0.02	< 0.002	NA	< 0.002	NA	0.0040 U	0.0061 U	0.0014	NA	NA	NA	0.0061 U	< 0.002	<0.002
						•	•									Su	m of Six	•									•			•						
Sum of Six (PFHpA.PFHxS.PFOA, PFOS.														I	I	1				I						l			I	1	I				$\overline{}$	
PFNA, and PFDA)	0.078	0.3369	0.09	0.081	0.1661	0.0984	0.1398	0.0334	0.0588	0.1357	0.136	0.0273	0.0127	0.1284	0.098	0.022	0.0574	0.0492	0.0273	<0.0046	0.0043	<0.01	<0.02	0.1181	0.0289	0.1496	0.1197	0.362	0.245	0.285	0.0438	0.0547	0.1263	0.1017	0.0092	0.0085
Thuy and Thosy	0.070	0.3303	0.03	0.001	Solar Field	0.0304	0.1330	0.0334	0.0300	0.1337	0.130	0.0273	0.0127	0.1204	0.030	0.022	Deploymen		0.0273	VO.0040	0.0043	10.01	V0.02	0.1101	0.0203	0.1430	0.1157	0.302	0.243	Maher W		0.0347	0.1203	0.1017	0.0032	0.0003
Sample ID	HW-D (m)	HW-D (m)	HW-D (d)	HW-D (d)	HW-D (dd)	HW-D (dd)	HW-G(S)	HW-G(M)	HW-G(D)	H\W-I (c)	HW-L(c)	HW-I (m)	HW-L (m)	HW-I (d)	HW-I (d)	HW-I	HW-F		HW-F	HW-F	HW-F	HW-F	HW-F	HW-H	HW-H	OW-9S	OW-9S	OW-95	OW-9M	OW-9M		OW-9D	OW-9D	OW-9DD	OW-9DD	ı
Sample Date	4/7/2017		6/24/2019	5/13/2020	6/24/2019	5/13/2020	12/3/2018	12/3/2018	12/3/2018	11/7/2018		6/24/2019	5/8/2020	6/24/2019	(-)		4/5/2017	11/7/2018	8/10/2010	5/5/2020	4/5/2017	11/7/2018		11/7/2018	5/8/2020	7/5/2016	12/3/2018	5/8/2020	12/3/2018	5/8/2020	7/5/2016	12/3/2018		4/11/2017		i
Depth to Groundwater	18.83	18.34	18.99	18.23	20.60	19.97	20.69	20.75	20.71	18.35	15.39	16.33	15.61	16.20	15.49	19.18	19.05	19.38	17.82	16.16	19.60	20.08	-,-,	20.39	17.37	12.23	10.80	10.14	11.11	10.45	12.48	10.82	10.15		11.30	ı
Total Well Depth	30.32	30.32	44.94	44.94	65.05	65.05	28.45	38.25	48.28	25.10	25.10	34.80	34.80	41.67	41.67	24.30	26.22		26.22		26.89	26.89		27.09	27.09	21.35	21.35	21.35	56.20	56.20	68.63	68.63	68.63		86.75	ı
Perfluoroheptanoic acid (PFHpA)	0.0033 U	<0.002	0.021	0.017	<0.002	<0.002	0.0074 U		0.0074 U	0.2	0.54	0.0032	0.0012	0.0053	0.0046	0.025	0.15	0.0074 U		0.044	0.34	0.0074 U	0.23	0.077	0.28	0.014	0.048	0.0064	0.11	0.0061	0.0028	0.033	0.044		0.015 J	i
Perfluorohexanesulfonic acid (PFHxS)	0.0089 J	<0.002	0.062	0.039	0.0092	0.008	0.0056 U	0.012 J	0.0056 U	0.18	0.22	0.019	0.0091	0.057	0.018	0.0056 U	0.042	0.0056 U	0.0021	0.011	0.019J	0.0056 U	0.005	0.0056 U	0.0031	< 0.003	0.023	0.011	0.0056 U	0.0033	0.012	0.12	0.18	0.12	0.042	i
Perfluorononanoic acid (PFNA)	0.0046 U	<0.002	0.015	0.019	0.0041	0.0029	0.0087 U	0.011 J	0.0087 U	0.16	0.082	<0.002	0.00078	<0.002	<0.002	0.028	0.0087 J	0.0087 U		0.0052	0.0046 U	0.0087 U	0.00081	0.0087 U	<0.002	0.0077	0.0087 U	0.0033	0.044	0.0037	0.0036	0.1	0.15	0.059	0.038	ı
Perfluorooctanoic acid (PFOA)	0.0046 U	<0.002	0.0088	0.0076	<0.002	<0.002	0.0033 U	0.0033 U	0.0033 U	0.26	0.29	0.0061	0.0018	0.0047	0.0028	0.026	0.053	0.0033 U	0.0047	0.027	0.075	0.0033 U	0.02	0.0050 J	0.002	0.0074	0.032	0.0043	0.052	0.0035	0.041	0.057	0.088		0.020 J	i
Perfluorooctane sulfonate (PFOS)	0.022	0.0011	0.095	0.12	0.013	0.013	0.0060 U	0.036	0.0060 U	0.066	0.04	0.014	0.014	0.012	0.02	0.13	0.047	0.0060 U			0.0026 U		0.00086	0.0060 U	<0.002	0.007	0.024	0.0058	0.0081 J	0.01	0.0052	0.52	0.72	0.5	0.14	i.
Perfluorodecanoic Acid (PFDA)	0.0040 U	<0.002	<0.002	<0.002	<0.002	<0.002	0.0061 U	0.0061 U	0.0061 U	0.012 U	<0.002	<0.002	<0.002	<0.002	<0.002	0.0061 U		0.0061 U			0.0040 U	0.0061 U	<0.002	0.0061 U	<0.002	NA	0.0061 U	<0.002	0.0061 U	<0.002	NA	0.0061 U		0.0040 U		i.
,																Sum of	Six									1										i.
Sum of Six (PFHpA.PFHxS.PFOA. PFOS.	1		1	ı	1	1		1	1	1				1	1	Junion	1	1			1	1	T .	1		ı	1	1	1	1	1	1 1				i.
PFNA, and PFDA)	0.0309	0.0011	0.2018	0.2026	0.0263	0.0239	0.0087 U	0.059	0.0087 U	0.866	1.172	0.0423	0.02688	0.079	0.0454	0.209	0.3007	0.0087 U	0.0121	0.0909	0.434	0.0087 U	0.25667	0.082	0.2851	0.0361	0.127	0.0308	0.2141	0.0266	0.0646	0.83	1.182	0.768	0.255	i
THA, and TIDA)	0.0309	0.0011	0.2018	0.2028	0.0203		Maher Wells	0.035	0.00870	0.000	1.1/2	0.0423	0.02000	0.075	0.0434	0.205	0.3007	0.0087 0	0.0121	0.0303	0.434	0.0087 0	0.23007	0.082	0.2031	0.0301	0.127	0.0308	0.2141	0.0200	0.0040	0.03	1.102	0.768	0.233	
						1	ivialiei vvelis	OW 10D	1																											
Sample ID	OW-18S	OW-18S	OW-18S	OW-18M	OW-18M	OW-18M	OW-18D	OW-18D Duplicate	OW-18D	OW-18D	OW-18D	OW-19D	OW-19D																							
Sample Date	7/5/2016	12/7/2018	E/9/2020	7/5/2016	12/7/2018	E /0 /2020	7/5/2016		4/11/2017	12/7/2019	E/12/2020	4/11/2017	E /12 /2020																							
Depth to Groundwater	24.40	24.29	23.45	25.82	24.72	23.93	25.95	25.95	25.55	24.28	23.47	26.73	25.64																							
Total Well Depth	31.23	31.23	31.23	74.44	74.44	74.44	123.36	123.36	123.36	123.36	123.36	110.42	110.42																							
Perfluoroheptanoic acid (PFHpA)	0.0071	0.0074 U	0.0039	0.0029	0.0074 U	0.0074	0.0071	0.0063	0.015J	0.014 J	0.012	0.0051 J	0.011																							
Perfluorohexanesulfonic acid (PFHxS)	0.0071	0.0074 U	0.0035	0.0025	0.0074 0	0.0074	0.0071	0.0003	0.0133	0.0143	0.012	0.00313	0.011	1																						
Perfluorononanoic acid (PFNA)	<0.002	0.0030 U	0.0033	0.0076	0.0087 U	0.0027	0.0065	0.0058	0.0046 U	0.0087 U	0.0028	0.025	0.0017	1																						
Perfluorooctanoic acid (PFOA)	0.0083	0.012 J	0.01	0.044	0.0060 J	0.0027	0.018	0.0038	0.025	0.0007 U	0.0025	0.0046 U	0.023	1																						
Perfluorooctane sulfonate (PFOS)	0.018	0.0123	0.016	0.0058	0.24	0.18	0.0059	0.0059	0.22	0.32	0.041	0.029	0.31	1																						
Perfluorodecanoic Acid (PEDA)	NA NA	0.028 0.0061 U	<0.010	NA	0.0061 U	<0.002	NA	NA	0.0040 U	0.0061 U	<0.002	0.0040 U	<0.002	1																						
6:2 Fluorotelomer sulfonate (6:2 FTS)	NA NA	0.0061 U	<0.002	NA NA	0.0061 U	<0.002	NA.	NA NA	0.0032 U	0.0061 U	<0.002	0.0032 U	<0.002	1																						
o.z maoroteiomer sunonate (0.2 ma)	.47	0.00000	-0.502	.46	Sum o		140		0.0032 0	0.00000	-0.002	0.0032 0	-0.502	1																						
Compaticity (DELICA DELICE DEGA 2000)				1	Suffi C	UI SIX		1						4																						
Sum of Six (PFHpA,PFHxS,PFOA, PFOS,																																				

<= Not detected by the laboratory above the reporting limit. Reporting limit shown.
 J = Estimated concentration between the method detection limit and reporting limit

J = Estimated concentration between the method detection limit and reporting limit
Results in ug/L, micrograms per lieter.
U= Not detected by the Laboratory above the method detection limit. Method detection limit shown.
Bold results above MessDEP GW-1 standard (0.02 ug/L)
Sum of six includes estimated values and does not include non-detects (U or <)
Total PFAS is the sum of detected PFAS analytes including estimated values and does not include non-detects (U or <)

0.0402 0.04 0.0416 0.0763 0.319 0.2697 0.0475 0.048 0.39 0.483 0.0953 0.0691 0.4657

NA = Not Applicable NR = Not Recorded

Table 2. 1,4 Dioxane Groundwater Results ug/L

										North	Ramp						Δ	irport Roa	d		ARFF E	Building
Sample ID	HW-1	HW-1	HW-5	HW-12	OW-6	OW-6	HW-4M	HW-4D	HW-204	HW-29	HW-207S	HW-207D	HW-207D	HW-19D	HW-19D	HW-A(D)	HW-A(D)	HW-B(D)	HW-N	HW-O	HW-L	HW-L
Sample Date	5/7/2015	8/5/2019	5/7/2015	5/7/2015	5/7/2015	9/27/2019	4/5/2017	4/5/2017	9/27/2019	9/27/2019	9/27/2019	4/5/2017	9/27/2019	4/5/2017	9/27/2019	4/5/2017	8/5/2019	4/5/2017	8/5/2019	8/5/2019	7/2/2019	5/13/202
Depth to Groundwater	NR	19.48	NR	NR	NR	23.38	26.2	26.35	23.67	22.71	23	23.76	22.9	21.3	21.05	22.4	18.76	22.75	15.8	8.83	19.08	18.62
Total Well Depth	30.84	30.84	27.8	26.00	31.8	31.8	32	48	32	29.87	25.64	34.18	34.18	41.3	41.3	57.05	57.05	57.15	22.33	14.1	70.55	70.55
1,4-Dioxane	<0.152	<0.25	<0.150	<0.150	<0.150	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	0.727	0.75
								Maher Well I	Field													-
Sample ID	OW-9M	OW-9D	OW-9D	OW-9D	OW-9DD	OW-9DD	OW-9DD	OW-18M	OW-18D	OW-18D	OW-18D	OW-19M	OW-19D	OW-19D	OW-19D							
Sample Date	5/28/2015	5/28/2015	12/3/2018	5/5/2020	5/28/2015	4/11/2017	12/3/2018	4/11/2017	4/11/2017	12/7/2018	5/13/2020	4/11/2017	4/11/2017	12/7/2018	5/13/2020							
Depth to Groundwater	NR	NR	10.82	10.15	NR	12.5	11.3	25.4	25.55	24.28	23.54	26.5	26.73	26.28	25.78							
Total Well Depth	56.2	68.63	68.63	68.63	86.75	86.75	86.75	74.44	123.36	123.36	123.36	76.5	110.42	110.42	110.42							
1.4-Dioxane	<0.141	< 0.141	<0.25	< 0.19	0.926	0.838	0.732	<0.25	0.552	<0.25	0.35	<0.25	0.800	<0.25	0.3	1						

Notes:

Results in ug/L, micrograms per liter

< = Not detected by the laboratory above the reporting limit. Reporting limit shown. Bold results above MassDEP GW-1 standard (0.3 ug/L)

NR = Not Recorded

Table 3. Soil Results for PFAS ug/kg

* *															AR	FF Building														
Sample ID	MCP Standard	ARFF1 (0-1')) ARFF1 (2')	ARFF1 (4')	ARFF2 (0-1')	ARFF3 (0-1')	ARFF4 (0-1')	ARFFCB (0-1)	A1 (0-1')	A2 (0-1')	A3 (0-1')	A4 (0-1')	A5 (0-1')	A6 (0-1')	A7 (0-1')	A8 (0-1')	A9 (0-1')	A10 (0-1')	A11 (0-1')	A12 (0-1')	ARFF3 (10-12')	A13 (0-1')	A14 (0-1')	A14 (0-1')	A15 (0-1')	A15 (0-1')	A16 (0-1')	A17 (0-1')	HW-P(M) [8-10]	HW-P(M [18-20]
Sample Date	S-1/GW-1 S-1/GW-3	6/20/2017	9/26/2017	9/26/2017	6/20/2017	9/26/2017	9/26/2017	9/26/2017	8/14/2018	8/14/2018	8/14/2018	8/14/2018	8/14/2018	8/14/2018	8/14/2018	8/14/2018	8/14/2018	8/14/2018	8/14/2018	8/14/2018	10/9/2018	2/27/2019	2/27/2019	5/13/2020	2/27/2019	5/13/2020	9/17/2020	9/17/2020	9/18/2020	9/18/202
Perfluoroheptanoic acid (PFHpA)	0.5 300	0.82 J	1.8	0.66 J	0.17 U	0.60 J	0.75 J	0.60 J	0.19 U	0.19 U	0.38 J	0.19 U	1.1	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U	0.32 J	<2.0	<1.9	0.51 J	<2.0	0.21 U	0.067 J	1.07	0.044 U	0.043 U
Perfluorohexanesulfonic acid (PFHxS)	0.3 300	0.23 U	0.23 U	0.23 U	0.23 U	0.64 J	0.23 U	0.23 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	<2.0	<1.9	0.24 U	<2.0	0.21 U	0.085 J	0.058 U	0.059 U	0.058 U
Perfluorooctanoic acid (PFOA)	0.72 300	0.75 J	2.6	0.75 J	0.26 U	0.78 J	0.97 J	0.90 J	0.25 U	0.25 U	0.37 J	0.30 J	1.9	0.25 U	0.25 U	0.25 U	0.34 J	0.25 U	0.25 U	0.25 U	1.9	<2.0	<1.9	0.68 J	<2.0	0.14 U	0.088 J	0.989	0.089 J	0.046 J
Perfluorononanoic acid (PFNA)	0.32 300	2.5	5.7	1.4	0.20 J	0.91 J	2.9	0.17 U	0.22 U	0.22 U	0.51 J	0.22 U	0.87 J	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	3.1	<2.0	<1.9	0.54 J	<2.0	0.15 U	0.119 J	0.774 J	0.073 U	0.072 U
Perfluorooctane sulfonate (PFOS)	2 300	4.5	2.7	1.1	0.29 J	4.4	1.0	1.1	0.26 U	0.26 U	0.29 J	0.26 U	0.26 U	0.26 U	0.38 J	0.26 U	0.85 J	0.26 U	0.26 U	0.26 U	1.1	<2.0	<1.9	0.32 J	<2.0	0.29	2.02	0.573 J	0.0127 U	0.0124 U
Perfluorodecanoic Acid (PFDA)	0.3 300	4.4	1.2	0.62 J	0.13 U	1.6	0.85 J	0.13 U	0.28 U	0.28 U	0.42 J	0.28 U	1.4	0.28 U	0.28 U	0.28 U	0.28 U	0.33 J	0.28 U	0.28 U	0.28 U	<2.0	<1.9	0.95 J	<2.0	0.15 U	0.074 J	0.147 J	0.065 U	0.064 U
						<u> </u>		•					Deployment A	ea				<u> </u>						•						
Sample ID	MCP Standard	DL1(0-1')	DL2 (0-1')	DL2 2'	DL2 4'	DL3 (0-1')	DL3 2'	DL3 4'	DL4 (0-1')	DL4 2'	DL4 4'	DL5 (0-1')	DL5 2'	DL5 4'	DL6 (0-1')	DL7 (0-1')	DL8 (2')	DL8 (4')	DL9 (0-1')	DL10 (0-1')	DL 11 (0-1')	DL 11 (0-1')	DL12 (0-1')	DL13 (0-1')						
Sample Date	S-1/GW-1 S-1/GW-3	6/20/2017	6/20/2017	9/26/2017	9/26/2017	6/20/2017	9/26/2017	9/26/2017	6/20/2017	9/26/2017	9/26/2017	6/20/2017	9/26/2017	9/26/2017	6/20/2017	6/20/2017	6/20/2017	9/26/2017	6/20/2017	6/20/2017	9/26/2017	8/20/2019	9/26/2017	9/26/2017						
Perfluoroheptanoic acid (PFHpA)	0.5 300	0.30 J	1.9	1.2	0.48 J	0.84 J	0.17 U	0.17 U	0.31 J	0.17 U	0.17 U	2.5	0.40 J	0.50 J	5.0	2.5 J	2.9 J	4.7 J	0.66 J	1.3	2.1	1.8	1.2	1.6						
Perfluorohexanesulfonic acid (PFHxS)	0.3 300	0.23 U	1.8	1.3	0.59 J	0.34 J	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U	0.49 J	0.49 J	0.23 U	0.23 U	2.3 U	2.3 U	2.3 U	0.35 J	0.94 J	0.82 J	<0.9	0.23 U	0.23 U	1					
Perfluorooctanoic acid (PFOA)	0.72 300	0.26 U	1.6	4.1	0.74 J	0.80 J	0.26 U	0.26 U	0.83 J	0.26 U	0.26 U	3.7	1.6	0.26 U	0.26 U	4.2 J	25	22	0.68 J	1.7	4.7	5.2	4.6	2.4						
Perfluorononanoic acid (PFNA)	0.32 300	0.17 U	0.81 J	2.5	0.17 U	0.55 J	0.17 U	0.17 U	2.7	0.17 U	3.7	0.19 J	0.17 U	0.17 U	0.19 J	9.6 J	46	1.7 U	0.22 J	0.17 U	16	2.4	7.3	1.5						
Perfluorooctane sulfonate (PFOS)	2 300	0.40 J	12	1.5	0.21 U	0.51 J	0.21 U	0.21 U	2.0	0.21 U	0.50 J	0.21 U	0.21 U	0.21 U	0.21 U	3.9 J	14	2.1 U	0.38 J	0.26 J	29	1.5	23	0.66 J						
Perfluorodecanoic Acid (PFDA)	0.3 300	0.63 J	0.13 U	0.13 U	0.13 U	1.4	0.13 U	0.13 U	1.3	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	1.3 U	1.3 U	1.3 U	0.13 U	0.13 U	1.8	8.7	0.66 J	7.4						
, ,						•	•		•	•			Deployment A	ea											1					
		D144 (D41)	D4 (0.41)	DO (0.41)	22 (2.41)	24 (24)	DE (0.41)	DC (0.41)	DT (0.41)	20 (2.41)	DO (0.41)	D40 (0.41)	D44 (0.41)	242 (2.41)	D144 (4 C)	D. 44 (40 40)	D. 44 (44 45)	D144 (0 41)	D144/4 5IV	D144 (40 40)	D144 (44 45))			(0.41)						
Sample ID	MCP Standard	DL14 (0-1')	D1 (0-1')	D2 (0-1')	D3 (0-1')	D4 (0-1')	D5 (0-1')	D6 (0-1')	D7 (0-1')	D8 (0-1')	D9 (0-1')	D10 (0-1')	D11 (0-1')	D12 (0-1 ⁻)	DL11 (4-6')	DL11 (10-12')	DL11 (14-16')) DL14 (0-1')	DL14 (4-6')	DL14 (10-12')	DL14 (14-16')	HW-F (10-12')	HW-F (14-16')	HW-3 (0-1')						
Sample Date	S-1/GW-1 S-1/GW-3	9/26/2017	8/14/2018	8/14/2018	8/14/2018	8/14/2018	8/14/2018	8/14/2018	8/14/2018	8/14/2018	8/14/2018	8/14/2018	8/14/2018	8/14/2018	10/4/2018	10/4/2018	10/4/2018	9/26/2017	10/4/2018	10/4/2018	10/4/2018	10/4/2018	10/4/2018	10/9/2018						
Perfluoroheptanoic acid (PFHpA)	0.5 300	4.9	0.19 U	0.21 J	0.19 U	0.95 J	0.22 J	0.25 J	7.8	1.0	2.7	0.19 U	0.19 U	0.19 U	1.3	0.31 J	0.23 J	4.9	0.36 J	0.19 U	1.4	0.32 J	1.3	0.19 U						
Perfluorohexanesulfonic acid (PFHxS)	0.3 300	0.71 J	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.31 J	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.71 J	0.24 U	0.24 U	0.74 J	0.24 U	0.24 U	0.24 U						
Perfluorooctanoic acid (PFOA)	0.72 300	23	0.25 U	0.33 J	0.25 U	1.1	0.25 U	0.28 J	14	2.2	3	0.25 U	0.25 U	0.25 U	2.9	1.9	0.50 J	23	0.58 J	0.32 J	2.9	0.25 U	1.4	0.25 U						
Perfluorononanoic acid (PFNA)	0.32 300	10	0.22 U	0.67 J	0.22 U	0.98 J	0.22 U	0.22 U	10	0.59 J	0.83 J	0.22 U	0.22 U	0.32 J	2.5	0.22 U	0.22 U	10	0.22 U	0.22 U	10	0.22 U	0.22 U	0.22 U						
Perfluorooctane sulfonate (PFOS)	2 300	7.6	0.26 U	0.66 J	0.38 J	2.9	0.26 U	0.26 U	3.4	2.1	0.67 J	0.54 J	0.91 J	0.44 J	0.26 U	0.26 U	0.26 U	7.6	0.26 U	0.26 U	2.3	0.26 U	0.26 U	0.26 U						
Perfluorodecanoic Acid (PFDA)	0.3 300	9.6	0.28 U	0.28 U	0.28 U	0.40 J	0.28 U	0.66 J	8.6	1.3	1.6	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	9.6	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U						
				1991 Dr	ill Location																				_					
		1991A (0-1')) 1991B (0-1')	1991C (0-1')	1991D (0-1')	1991A-B (3-4')	1991C-D (2-3')																							
Sample ID	MCP Standard				1 1	1 1	` '																							
Sample Date	S-1/GW-1 S-1/GW-3			8/14/2018	8/14/2018																									
Perfluoroheptanoic acid (PFHpA)	0.5 300	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U																							
Perfluorohexanesulfonic acid (PFHxS)	0.3 300	0.24 U	0.66 J	0.24 U	0.24 U	0.24 U	0.24 U																							
Perfluorooctanoic acid (PFOA)	0.72 300	0.25 U	0.26 J	0.25 U	0.25 U	0.25 U	0.25 U																							
Perfluorononanoic acid (PFNA)	0.32 300	0.22 U	0.22 U	0.22 U	0.30 J	0.22 U	0.22 U																							
Perfluorooctane sulfonate (PFOS)	2 300	0.49 J	1.1	0.55 J	0.36 J	0.30 J	0.42 J																							
Perfluorodecanoic Acid (PEDA)	0.3 300	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	II .																						

Notes:

< = Not detected by the laboratory above the reporting limit. Reporting limit shown.</p>
J = Estimated concentration between the method detection limit and reporting limit.
Results in ug/kg, micrograms per kilogram.
U= Not detected by the Laboratory above the method detection limit. Method detection limit shown.
Bold results above MassDEP S-1/GW-1 standard

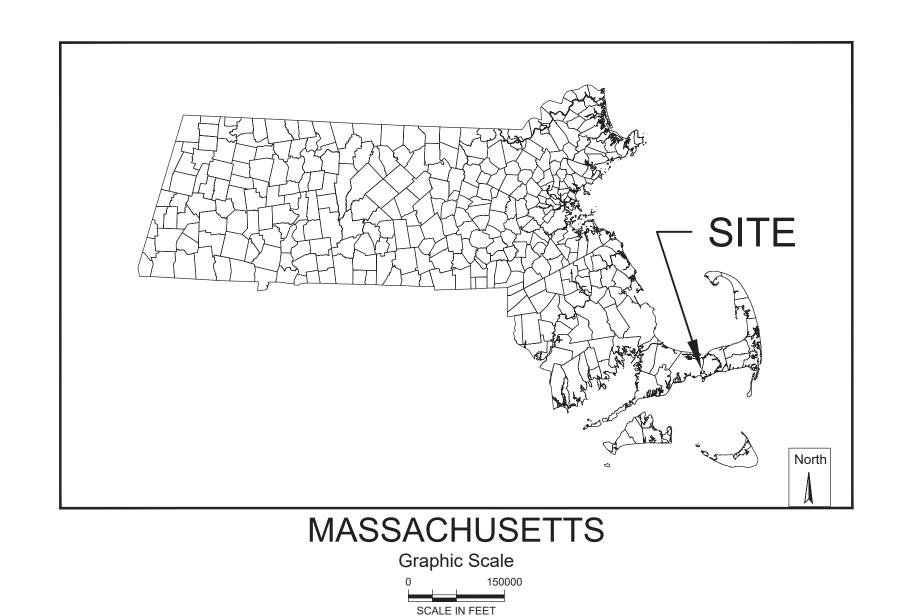
Table 4: Ratio of Stable Isotopes Oxygen-18 and Hydrogen-2 Laboratory Results

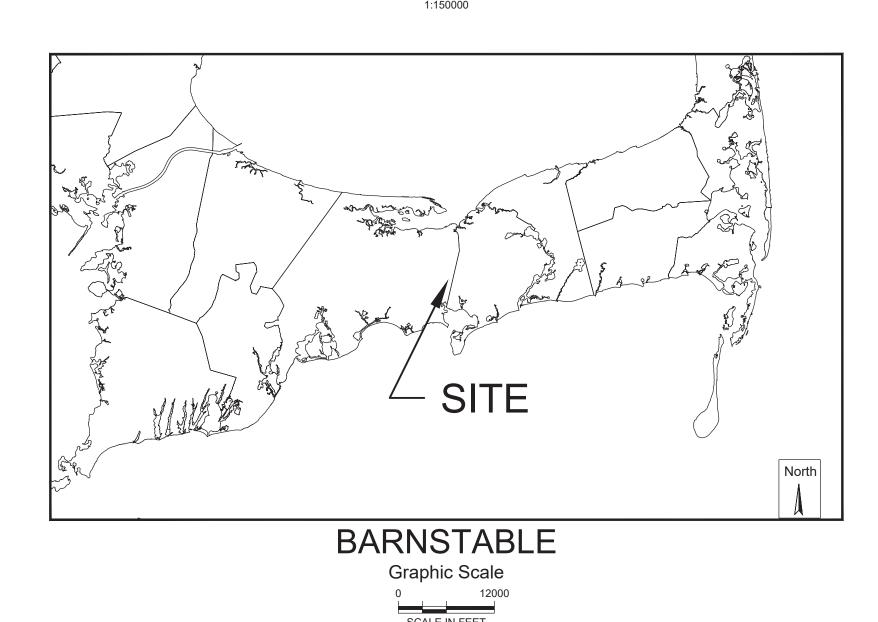
Cample Date	Lab Sample ID	HW Sample ID	Stab	le Isotope Oxyge	n-18	Stak	le Isotope Hydrogen	-2			
Sample Date	Lab Sample ID	HW Sample ID	δ180 (V-SMOW)	Atm %	Expected Values	δ180 (V-SMOW)	Atm %	Expected Values			
	1811299-2	HW-I	-6.92	0.20	-	-40.41	0.01494	-			
	1011299-2	□VV-I	-6.77	0.20	-	-40.17	0.01495	-			
	1811299-4	HW-E	-6.79	0.20	-	-38.56	0.01497	-			
	1011299-4	UAA-E	-6.85	0.20	-	-38.87	0.01497	-			
11/7/2018	1811299-5	HW-F	-6.9	0.20	-	-38.28	0.01498	-			
	1011299-5	HVV-F	-6.88	0.20	-	-38.15	0.01498	-			
			-2.67	0.20	-	-18.65	0.01528	-			
	1811299-7	SW-2	-2.61	0.20	_	-20.42	0.01526	-			
			-2.01	0.20	-	-23.04	0.01521	-			
	1012100 1	LIVA C(C)	-6.74	0.20	-	-38.19	0.01498	-			
	1812198-1	HW-G(S)	-6.93	0.20	-	-37.87	0.01498	-			
	1012100.2	11)A/ C/NA)	-7.53	0.20	-	-44.34	0.01498	-			
	1812198-2	HW-G(M)	-7.57	0.20	-	-44.39	0.01498	-			
	1012100.2	LIM C(D)	-7.18	0.20	-	-44.15	0.01489	-			
	1812198-3	HW-G(D)	-7.45	-7.45 0.20		-44.56	0.01488	-			
	1012100 4	OW 00	-7.29	0.20	-	-41.86	0.01492	-			
12/3/2018	1812198-4	OW-9S	-7.41	0.20	-	-42.94	0.0149	-			
			-7.76	0.20	-	-47.91	0.01483	-			
	1812198-5	OW-9D	-7.71	0.20	-	-46.82	0.01484	-			
			-7.71	0.20	-	-47.20	0.01484	-			
	1812198-6	OW-9DD	-7.52	0.20	-	-45.58	0.01486	-			
	1012190-0	Ovv-900	-7.57	0.20	-	-45.48	0.01487	-			
	1812198-7	OW-9M	-7.13	0.20	-	-41.44	0.01493	-			
	1012190-7	000-9101	-7.24	0.20	-	-43.40	0.0149	-			
	1012222 1	OW-18S	-7.58	0.20	-	-49.29	0.01481	-			
	1812232-1	OVV-183	-7.54	0.20	-	-49.66	0.0148	-			
12/7/2010	1012222	OW-18M	-6.95	0.20	-	-42.64	0.01491	-			
12/7/2018	1812232-2	044-19141	-6.89	0.20	-	-42.57	0.01491	-			
	1012222	OW 10D	-7.28	0.20	-	-44.76	0.01488	*			
	1812232-3	OW-18D	-7.36	0.20	-	-41.61	0.01493	*			
	IAEA OH-14	-	-5.64	0.20	-5.6	-37.45	0.01499	-37.70			
04/00	IAEA OH-15	-	-9.59	0.20	-9.41	-77.89	0.01436	-78			
QA/QC	IAEA OH-16	-	-15.72	0.20	-15.41	-	-	-113.8			
	Antarc IC	-	-29.83	0.19	-30						

Table 5. Fire Truck Spray Water Results for PFAS ug/L

		Fire Truck Spray Water Spray										
Sample ID	Но	ose	Ro	oof	Bun	nper	Officer Sid	le Handline	Driver s	ide-Rear	Officer s	side-Rear
Sample Date	8/22/2019	11/12/2019	8/22/2019	11/12/2019	8/22/2019	11/12/2019	8/22/2019	11/12/2019	8/22/2019	11/12/2019	8/22/2019	11/12/2019
Perfluoroheptanoic acid (PFHpA)	0.073	<0.002	0.0045	<0.002	0.0039	<0.002	0.027	<0.002	0.0055	<0.002	0.081	0.0021
Perfluorohexanesulfonic acid (PFHxS)	0.0059	<0.002	0.0033	<0.002	0.0039	<0.002	0.004	<0.002	0.0048	<0.002	0.0043	<0.002
Perfluorononanoic acid (PFNA)	0.011	<0.002	0.0026	<0.002	0.0031	<0.002	0.013	<0.002	0.003	<0.002	0.016	<0.002
Perfluorooctanoic acid (PFOA)	0.088	0.0062	0.0087	<0.002	0.01	<0.002	0.039	<0.002	0.011	<0.002	0.076	0.0041
Perfluorooctane sulfonate (PFOS)	0.009	0.0021	0.0068	<0.002	0.006	<0.002	0.0087	<0.002	0.0093	<0.002	0.0086	<0.002
Perfluorodecanoic Acid (PFDA)	0.014	<0.002	0.004	<0.002	0.0045	<0.002	0.032	<0.002	0.0049	<0.002	0.032	<0.002
Sum of Six (PFHpA,PFHxS,PFOA, PFOS,	0.2009	0.0083	0.0299	<0.002	0.0314	<0.002	0.1237	<0.002	0.0385	<0.002	0.2179	0.0041
PFNA, and PFDA)	0.2009	0.0083	0.0299	₹0.002	0.0314	<0.002	0.1237	<0.002	0.0385	₹0.002	0.2179	0.0041

Notes:


< = Not detected by the laboratory above the reporting limit. Reporting limit shown. Results in ug/L, micrograms per liter.


Bold results above MassDEP GW-1 standard (0.02 ug/L)


APPENDIX A

Final HYA Soil Capping & Drainage for Per- and Poly-Fluoroalkyl Substances Mitigation
Plan Set

HYA SOIL CAPPING & DRAINAGE FOR PER- AND POLY-FLUOROALKYL SUBSTANCES (PFAS) MITIGATION FINAL CONSTRUCTION PLANS BARNSTABLE, MASSACHUSETTS MAY 2020

CAPPING SITES

1 INCH = 500 FEET

SCALE IN FEET

	Sheet List Table
Sheet Number	Sheet Title
1	COVER & SHEET INDEX
2	CONSTRUCTION NOTES & DETAILS
3	EROSION & SEDIMENTATION CONTROL PLAN
4	SITE PLAN (ARFF SRE BUILDING)
5	SITE PLAN (DEPLOYMENT AREA)
6	CONSTRUCTION SAFETY AND PHASING PLAN - GENERAL NOTES
7	CONSTRUCTION SAFETY AND PHASING PLAN - DETAILS
8	CONSTRUCTION SAFETY AND PHASING PLAN - SITE PLAN
9	CONSTRUCTION SAFETY AND PHASING PLAN - WORK AREA I
10	CONSTRUCTION SAFETY AND PHASING PLAN - WORK AREA II

GENERAL NOTES:

1. THIS PLAN SET IS FOR BIDDING/PRICING AND NOT FOR CONSTRUCTION

HYA SOIL CAPPING & DRAINAGE FOR PER- AND POLY-FLUOROALKYL SUBSTANCES (PFAS) MITIGATION FINAL CONSTRUCTION PLANS BARNSTABLE, MASSACHUSETTS

Prepared For:

Barnstable Municipal Airport 480 Barnstable Road Hyannis, MA 02601 (508) 775-2020

Date By Appr. Description

Prepared By:

Horsley Witten Group, Inc.

Sustainable Environmental Solutions

www.horsleywitten.com

Headquarters
90 Route 6A
Sandwich, MA 02563
(508) 833-6600 voice

Horsley Witten Group, Inc.

Sustainable Environmental Solutions

Www.horsleywitten.com

55 Dorrance Street
Suite 403
Providence, RI 02906
(857) 263-8193 voice
(617) 574-4799 fav.

Headquarters
90 Route 6A
Sandwich, MA 02563
(508) 833-6600 voice

 Project Number:

1 of 10

113 R2 Water Street

C - 1

last modified: 03/23/20 printed: 05/11/20 by ml H:\Projects\HYA\17027 BMA PFOS 1-4 IF

SURVEY NOTES:

- THE EXISTING CONDITIONS DEPICTED IN THIS PLAN SET WERE TAKEN FROM THE SURVEY PLANS ENTITLED "EAST RAMP EXISTING CONDITIONS PLAN," PRODUCED BY DANIEL W. MACKENZIE, PLS OF THE HORSLEY WITTEN GROUP, INC. ON 2/7/20. THESE SURVEY PLANS WERE BASED ON A FIELD SURVEY CONDUCTED BY THE HORSLEY WITTEN GROUP ON NOVEMBER 19, AND NOVEMBER 22, 2019.
- THIS PLAN DOES NOT SHOW ANY RECORDED OR UNWRITTEN EASEMENTS WHICH MAY EXIST. HOWEVER, THIS DOES NOT CONSTITUTE A GUARANTEE THAT NO SUCH EASEMENTS EXIST
- THE ELEVATIONS DEPICTED HEREON WERE BASED ON THE NORTH AMERICAN VERTICAL DATUM OF 1988.
- 4. ALL PROPERTY AND BOUNDARY LINES DEPICTED ARE APPROXIMATE ONLY.
- 5. EXISTING CONTOUR INTERVALS ARE EQUAL TO ONE FOOT.
- 6. THE ACCURACY OF MEASURED PIPE INVERTS AND PIPE SIZES IS SUBJECT TO FIELD CONDITIONS, THE ABILITY TO MAKE VISUAL OBSERVATIONS, DIRECT ACCESS TO THE VARIOUS ELEMENTS AND OTHER CONDITIONS

GENERAL CONSTRUCTION NOTES:

- ALL SITE WORK TO COMPLETE THIS PROJECT AS INDICATED ON THE DRAWINGS AND IN THE SPECIFICATIONS IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR.
- IMMEDIATELY CONTACT AND COORDINATE WITH THE ENGINEER AND OWNER IF ANY DEVIATION OR ALTERATION OF THE WORK PROPOSED ON THESE DRAWINGS IS REQUIRED.
- UTILIZE ALL PRECAUTIONS AND MEASURES TO ENSURE THE SAFETY OF THE PUBLIC, ALL PERSONNEL AND PROPERTY DURING CONSTRUCTION IN ACCORDANCE WITH OSHA STANDARDS. INCI UDING THE INSTALLATION OF TEMPORARY FENCING BARRICADES. SAFETY LIGHTING, CONES, POLICE DETAIL AND/OR FLAGMEN AS DETERMINED NECESSARY BY THE TOWN/CITY/LOCAL MUNICIPALITY. THE CONTRACTOR IS RESPONSIBLE FOR THE COST OF POLICE DETAIL AND FOR COORDINATING WITH THE LOCAL OR STATE POLICE DEPARTMENT FOR ALL REQUIRED POLICE DETAIL.
- MAKE ALL NECESSARY CONSTRUCTION NOTIFICATIONS AND APPLY FOR AND OBTAIN ALL NECESSARY CONSTRUCTION PERMITS, PAY ALL FEES INCLUDING POLICE DETAILS AND POST ALL BONDS, IF NECESSARY, ASSOCIATED WITH THE SAME, AND COORDINATE WITH
- ALL EXISTING CONDITIONS SHOWN ARE APPROXIMATE AND ARE BASED ON THE BEST INFORMATION AVAILABLE. PRIOR TO THE START OF CONSTRUCTION VERIFY THAT THE PROPOSED IMPROVEMENTS SHOWN ON THE PLANS DO NOT CONFLICT WITH ANY KNOWN EXISTING OR OTHER PROPOSED IMPROVEMENTS. IF ANY CONFLICTS ARE DISCOVERED. NOTIFY THE OWNER AND THE ENGINEER PRIOR TO INSTALLING ANY PORTION OF THE SITE WORK WHICH WOULD BE AFFECTED.
- THE LOCATION AND/OR ELEVATION OF EXISTING UTILITIES AND STRUCTURES AS INDICATED ON THE DRAWINGS ARE BASED ON RECORDS OF VARIOUS UTILITY COMPANIES, AND WHEREVER POSSIBLE, MEASUREMENTS TAKEN IN THE FIELD. THIS INFORMATION IS NOT TO BE RELIED UPON AS BEING EXACT OR COMPLETE. VERIFY THE LOCATION OF ALL UNDERGROUND UTILITIES AND STRUCTURES IN THE FIELD PRIOR TO THE START OF CONSTRUCTION. CONTACT THE APPROPRIATE UTILITY COMPANY, ANY GOVERNING PERMITTING AUTHORITY IN THE TOWN, AND "DIGSAFF" (1-888-344-7233) AT LEAST THREE BUSINESS DAYS PRIOR TO ANY EXCAVATION WORK IN PREVIOUSLY UNALTERED AREAS TO REQUEST EXACT FIELD LOCATION OF UTILITIES. THE CONTRACTOR MUST RESOLVE CONFLICTS BETWEEN THE PROPOSED UTILITIES AND FIELD-LOCATED UTILITIES AND REPORT ANY DISCREPANCIES TO THE ENGINEER IMMEDIATELY. THE ENGINEER ASSUMES NO RESPONSIBILITY FOR DAMAGES INCURRED AS A RESULT OF UTILITIES OMITTED INCOMPLETELY OR INACCURATELY SHOWN. THE CONTRACTOR MUST, MAINTAIN ACCURATE RECORDS OF THE LOCATION. AND ELEVATION OF ALL WORK INSTALLED AND EXISTING UTILITIES FOUND DURING CONSTRUCTION FOR THE PREPARATION OF THE AS-BUILT PLAN.
- COORDINATE AND MAKE ALL CONNECTION ARRANGEMENTS WITH UTILITY COMPANIES, AS REQUIRED.
- THE CONTRACTOR MUST MAINTAIN ALL EXISTING UTILITIES IN WORKING ORDER AND FREE FROM DAMAGE DURING THE ENTIRE DURATION OF THE PROJECT. REPAIR ANY DAMAGE TO EXISTING UTILITY LINES OR STRUCTURES INCURRED DURING CONSTRUCTION OPERATIONS AT NO COST TO THE OWNER. THE CONTRACTOR IS RESPONSIBLE FOR ALL COST RELATED TO THE REPAIR OF UTILITIES. EXCAVATION REQUIRED WITHIN THE PROXIMITY OF EXISTING UTILITY LINES MUST BE DONE BY HAND.
- COORDINATE ALL TRENCHING WORK WITHIN ROADWAYS WITH THE PROPER LOCAL & STATE AGENCY. THE CONTRACTOR IS RESPONSIBLE FOR ALL TRENCH SAFETY INCLUDING ANY LOCAL AND/OR STATE PERMITS REQUIRED FOR THE TRENCH WORK. IF THIS WORK IS REQUIRED TO OCCUR OUTSIDE THE AGREED UPON HOURS OF OPERATION FOR THE FACILITY, THE CONTRACTOR MUST PLAN ACCORDINGLY
- 10. SAWCUT ALL TRENCH WORK WITHIN EXISTING PAVEMENT AS INDICATED ON THE DRAWINGS. BACKFILL AND COMPACT TRENCH WORK AS INDICATED ON THE DRAWING AND IN THE SPECIFICATIONS. IF SETTLEMENT OCCURS DUE TO INADEQUATE COMPACTION. AS DETERMINED BY THE ENGINEER, WITHIN THE WARRANTY PERIOD, CONTRACTOR IS REQUIRED TO REMOVE, PATCH AND REPAVE AFTER ONE COMPLETE 12-MONTH CYCLE.
- 11. IMPORT ONLY CLEAN MATERIAL. MATERIAL FROM AN EXISTING OR FORMER 21E SITE AS DEFINED BY THE MASSACHUSETTS CONTINGENCY PLAN 310 CMR 40.0000 WILL NOT BE ACCEPTED . ANALYTICAL TESTING OF BACKFILL MATERIAL FOR PFAS IS REQUIRED TO BE SUBMITTED TO THE OWNER AND ENGINEER FOR APPROVAL PRIOR TO PLACEMENT.
- 12. IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO ESTABLISH AND MAINTAIN ALL CONTROL POINTS AND BENCHMARKS DURING CONSTRUCTION INCLUDING BENCHMARK LOCATIONS AND ELEVATIONS AT CRITICAL AREAS. COORDINATE WITH THE ENGINEER THE LOCATION OF ALL CONTROL POINTS AND BENCHMARKS.
- 13. SITE LAYOUT SURVEY REQUIRED FOR CONSTRUCTION MUST BE PROVIDED BY THE CONTRACTOR AND PERFORMED BY A MASSACHUSETTS' REGISTERED PROFESSIONAL LAND SURVEYOR. THE CONTRACTOR IS RESPONSIBLE FOR COORDINATING WITH THE SURVEYOR FOR ALL SITE SURVEY WORK
- MAINTAIN ALL GRADE STAKES SET BY THE SURVEYOR. GRADE STAKES ARE TO REMAIN UNTIL A FINAL INSPECTION OF THE ITEM HAS BEEN COMPLETED BY THE ENGINEER. RE-STAKING OF PREVIOUSLY SURVEYED SITE FEATURES IS THE RESPONSIBILITY (INCLUDING COST) OF THE CONTRACTOR
- UNLESS OTHERWISE INDICATED ON THE DRAWINGS AND/OR IN THE SPECIFICATIONS, ALL SITE CONSTRUCTION MATERIALS AND METHODOLOGIES ARE TO CONFORM TO THE MOST RECENT VERSION OF THE MASSACHUSETTS DEPARTMENT OF TRANSPORTATION STANDARD SPECIFICATIONS (THE COMMONWEALTH OF MASSACHUSETTS DEPARTEMENT OF TRANSPORTATION STANDARD SPECIFICATIONS FOR HIGHWAY AND BRIDGES 2020 EDITION)
- 16. PROVIDE ALL CONSTRUCTION SERVICE IN ACCORDANCE WITH APPLICABLE LAWS AND REGULATIONS REGARDING NOISE, VIBRATION, DUST, SEDIMENTATION CONTAINMENT, AND TRENCH WORK.
- 17. COLLECT SOLID WASTES AND STORE IN A SECURED DUMPSTER. THE DUMPSTER MUST MEET ALL LOCAL AND STATE SOLID WASTE
- 18. RESTORE ALL SURFACES EQUAL TO THEIR ORIGINAL CONDITION AFTER CONSTRUCTION IS COMPLETE PER SPECIFICATIONS. LEAVE ALL AREAS NOT DISTURBED BY CONSTRUCTION IN THEIR NATURAL STATE. TAKE CARE TO PREVENT DAMAGE TO SHRUBS, TREES, OTHER LANDSCAPING AND/OR NATURAL FEATURES. WHEREAS THE PLANS DO NOT SHOW ALL LANDSCAPE FEATURES, EXISTING CONDITIONS MUST BE VERIFIED BY THE CONTRACTOR IN ADVANCE OF THE WORK.
- 19. REGULARLY INSPECT THE PERIMETER OF THE PROPERTY TO CLEAN UP AND REMOVE LOOSE CONSTRUCTION DEBRIS BEFORE IT LEAVES THE SITE. PROMPTLY REMOVE ALL DEMOLITION DEBRIS FROM THE SITE TO AN APPROVED DUMP SITE.
- 20. ALL TRUCKS LEAVING THE SITE MUST BE COVERED.
- 21. DO NOT WASH ANY CONCRETE OR MORTAR ONSITE. REMOVE BY HAND ANY CEMENT OR CONCRETE DEBRIS LEFT IN THE DISTURBED
- 22. BURIAL OF ANY STUMPS, SOLID DEBRIS, AND/OR STONES/BOULDERS ONSITE IS PROHIBITED.
- 23. AT THE END OF CONSTRUCTION, REMOVE ALL CONSTRUCTION DEBRIS AND SURPLUS MATERIALS FROM THE SITE. PERFORM A THOROUGH INSPECTION OF THE WORK PERIMETER. COLLECT AND REMOVE ALL MATERIALS AND BLOWN OR WATER CARRIED
- 24. THE WORK AREA IS A DISPOSAL SITE AS DEFINED BY THE MASSACHUSETTS CONTINGENCY PLAN 310 CMR 40.0000. IT IS THE CONTRACTOR'S RESPONSIBILITY TO DEVELOP A SITE SPECIFIC HEALTH AND SAFETY PLAN FOR INTRUSIVE SOIL ACTIVITIES IN AN AREA WITH KNOWN PFAS CONTAMINATION. THE OWNER WILL PROVIDE OVERSIGHT AND DUST MONITORING UNDER THE DIRECTION OF A LICENSED SITE PROFESSIONAL.
- 25. DETAILS REGARDING PFAS CONCENTRATIONS IN SOIL ARE SET FORTH IN THE REPORT TITLED, "FINAL IMMEDIATE RESPONSE ACTION PLAN MODIFICATION," PREPARED BY HORSLEY WITTEN GROUP DATED DECEMBER 2019. THE MAXIMUM CONCENTRATION OF THE MASSACHUSETTS DEPARTMENT OF ENVIRONMENTAL PROTECTION SUM OF SIX PFAS IN SOIL IS 87.9 μ g / kg. REFER TO THE ATTACHED REPORT FOR ADDITIONAL DETAILS.
- 26. THE CONTRACTOR IS RESPONSIBLE FOR DUST CONTROL. AT NO TIME IS VISIBLE DUST GENERATION ACCEPTABLE. DUST SUPPRESSION INCLUDING THE USE OF WATER IS CONSIDERED INCIDENTAL TO THIS PROCESS.
- SOIL REMOVED FROM ARFF SRE AREA IS TO BE USED IN GRADING AND SHAPING WITHIN THE DEPLOYMENT AREA. AT NO TIME IS ADDITIONAL SOIL FROM THE ARFF SRE OR DEPLOYMENT AREA TO BE DISTURBED OR REMOVED WITHOUT APPROVAL FROM OWNER

GENERAL DEMOLITION NOTES:

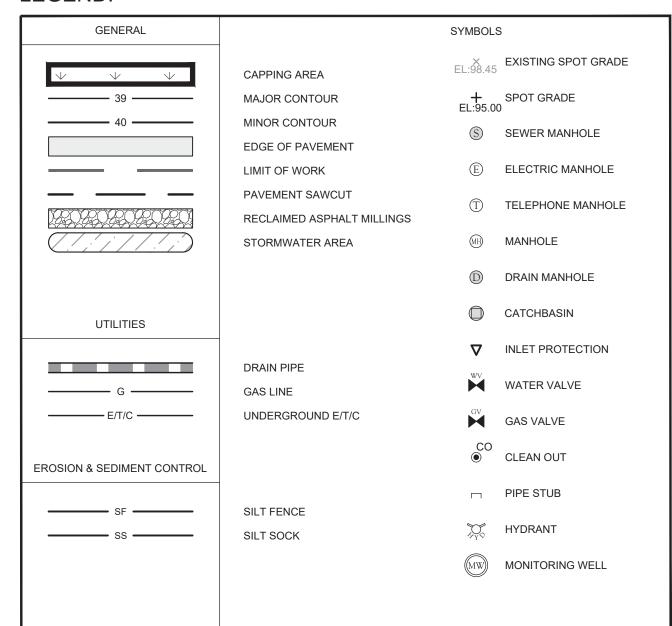
- THIS PLAN SET DOES NOT INCLUDE DETAILS & SPECIFICATIONS FOR ALL DEMOLITION WORK REQUIRED WITHIN THE PROPOSED CONSTRUCTION LIMITS. UNLESS OTHERWISE NOTED, THE CONTRACTOR IS RESPONSIBLE FOR THE RELOCATION, DEMOLITION, REMOVAL AND DISPOSAL, IN A LOCATION APPROVED BY ALL GOVERNING AUTHORITIES, OF ALL EXISTING SITE ELEMENTS AND STRUCTURES INCLUDING, BUT NOT LIMITED TO: ROADWAYS, PARKING AREAS, BITUMINOUS CONCRETE, CEMENT CEMENT CONCRETE, GRAVEL, BERMS, AND ALL OTHER STRUCTURES SHOWN AND NOT SHOWN WITHIN CONSTRUCTION LIMITS, AND WHERE NEEDED, TO ALLOW FOR NEW CONSTRUCTION. ALL FACILITIES TO BE REMOVED ARE TO BE UNDERCUT TO SUITABLE MATERIAL AND BROUGHT TO GRADE WITH SUITABLE FILL MATERIAL, COMPACTED IF NECESSARY, PER SPECIFICATIONS.
- OBTAIN ANY PERMITS REQUIRED FOR DEMOLITION AND DISPOSAL
- REMOVE ALL DEBRIS FROM THE SITE AND DISPOSE OF THE DEBRIS IN A PROPER AND LEGAL MANNER.
- PRIOR TO DEMOLITION OCCURRING, ALL EROSION CONTROL DEVICES ARE TO BE INSTALLED

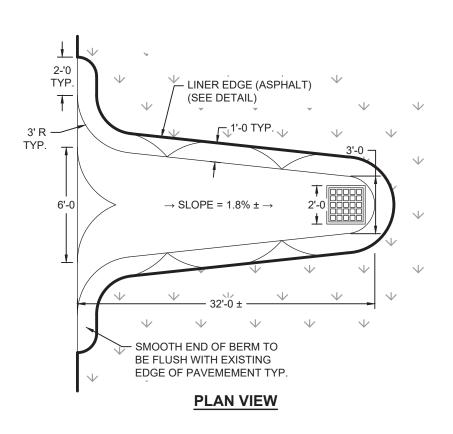
BASIC CONSTRUCTION SEQUENCE:

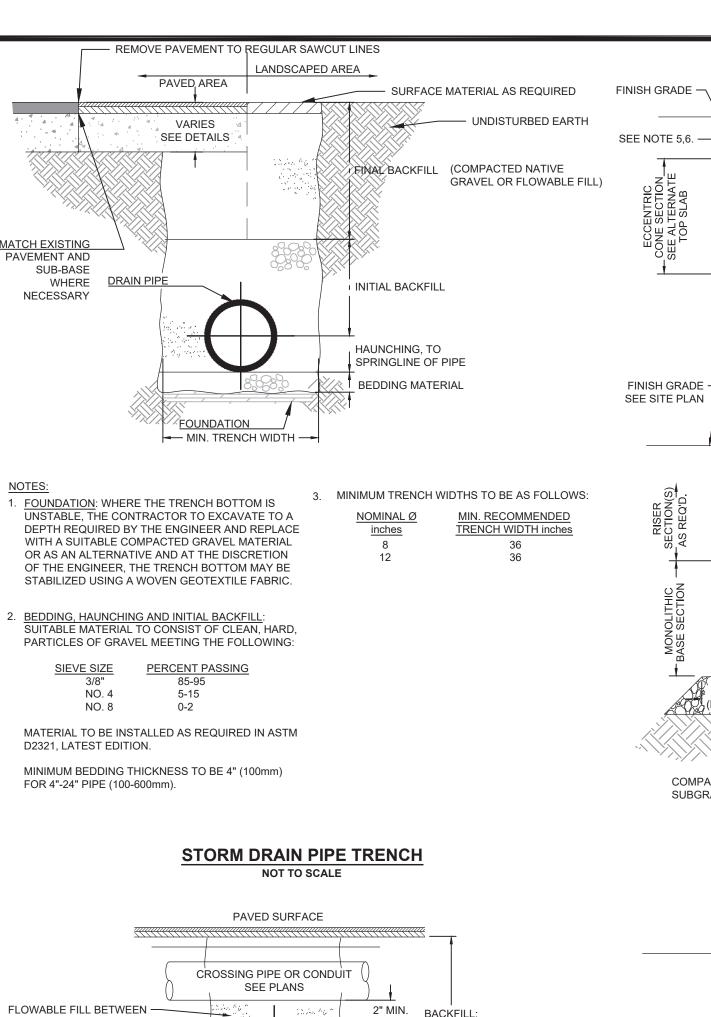
THE FOLLOWING CONSTRUCTION SEQUENCE IS TO BE USED AS A GENERAL GUIDELINE. COORDINATE WITH THE OWNER AND ENGINEER AND SUBMIT A PROPOSED CONSTRUCTION SEQUENCE FOR REVIEW AND APPROVAL PRIOR TO CONSTRUCTION.

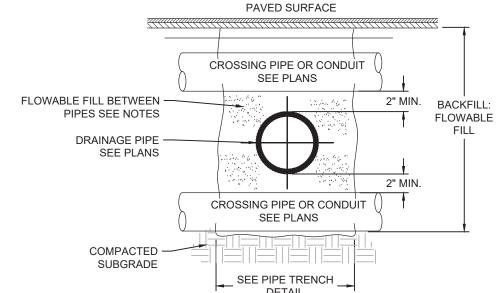
- 1. SURVEY AND STAKE THE PROPOSED LIMIT OF DISTURBANCE, THE PROPOSED MATERIAL/EQUIPMENT STORAGE AREA, AND
- 2. PLACE SEDIMENTATION BARRIERS AS INDICATED ON DRAWINGS AND STAKED OUT IN THE FIELD. UNDER NO CIRCUMSTANCES IS THE LIMIT OF WORK TO EXTEND BEYOND THE SEDIMENTATION BARRIERS/LIMIT OF DISTURBANCE AS INDICATED ON DRAWINGS.
- INSTALL DRAINAGE MANHOLES, CATCH BASINS, DRAINAGE PIPES, AND UNDERGROUND DRAINAGE STRUCTURES. BEGIN WORK AT THE STORMWATER MANAGEMENT AREAS AND PROGRESS UP-GRADIENT. THE STORMWATER MANAGEMENT AREA(S) AND DRAINAGE NETWORK ARE TO BE PROTECTED FROM SEDIMENTATION UNTIL ALL UN-STABILIZED AREAS ARE STABILIZED. INSTALL SEDIMENT BARRIERS AT ALL POINTS OF ENTRY INTO THE DRAINAGE NETWORK. TAKE PARTICULAR CARE TO PROTECT THE UNDERGROUND
- STRIP TOPSOIL FROM THE AREA OF THE PROPOSED CAPPING AND STOCKPILE IT IN APPROVED LOCATIONS. TOPSOIL STOCKPILES MUST BE PROTECTED BY A SEDIMENT BARRIER.
- BEGIN ROUGH GRADING AREAS FOR CAPPING. BRING ROUGH GRADING TO PROPER ELEVATIONS AS SOON AS PRACTICABLE COORDINATE WORK TO MINIMIZE TIME SOILS ARE UN-STABILIZED.
- 6. PERFORM CAPPING INSTALLATION AND TRENCHING.
- 7. FINISH PERMANENT VEGETATIVE STABILIZATION.
- SWEEP THE ADJACENT PAVED WORK AREAS TO REMOVE ALL SEDIMENTS. REPAIR DRAINAGE OUTLETS AND BASINS AS REQUIRED. CLEAN AND FLUSH THE DRAINAGE STRUCTURES AND PIPES AT THE END OF CONSTRUCTION AND REMOVE ALL ACCUMULATED SEDIMENTS IN THE STORMWATER MANAGEMENT AREAS. CONTRACTOR MUST INSPECT THE DRAINAGE NETWORK AND REPAIR ANY DAMAGE IMMEDIATELY
- ENGINEER TO APPROVE THE REMOVAL OF ALL TEMPORARY SOIL EROSION AND SEDIMENTATION CONTROL MEASURES FOLLOWING VEGETATIVE ESTABLISHMENT OF ALL DISTURBED AREAS AND DETERMINE WHEN THE CONTRIBUTING AREA HAS REACHED A MINIMUM

GENERAL GRADING AND DRAINAGE NOTES

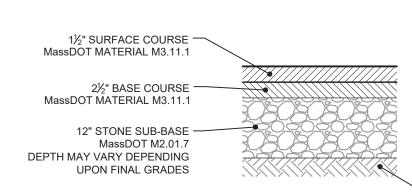

- 1. ALL CUT AND FILL SLOPES SHALL BE 3:1 OR FLATTER UNLESS OTHERWISE NOTED.
- ADJUST AND/OR CUT EXISTING PAVEMENT AS NECESSARY TO ASSURE A SMOOTH FIT AND CONTINUOUS GRADE
- PROPOSED ELEVATIONS ARE SHOWN TO FINISH PAVEMENT OR GRADE UNLESS NOTED OTHERWISE.
- ALL EARTHWORK AND SITE PREPARATION MUST BE DONE IN STRICT ACCORDANCE WITH THE RECOMMENDATIONS OF ANY SUBSURFACE INVESTIGATION OR GEOTECHNICAL REPORTS PREPARED FOR THIS SITE.


STORMWATER FACILITY OPERATION & MAINTENANCE


THE CONTRACTOR IS RESPONSIBLE FOR THE PROPER INSPECTION AND MAINTENANCE OF ALL DRAINAGE/STORMWATER MANAGEMENT FACILITIES AS OUTLINED BELOW DURING CONSTRUCTION AND UNTIL SUCH TIME THAT THE PROJECT IS ACCEPTED BY THE OWNER AND


- INSPECT AND RESTORE/CLEAN ALL NEWLY CONSTRUCTED OR ALTERED EXISTING FACILITIES (INLETS, MANHOLES, PIPES, AND UNDERGROUND INFILTRATION STRUCTURES) OF ACCUMULATED SEDIMENT AND DEBRIS PRIOR TO THE OWNER'S ACCEPTANCE.
- REMOVE AND DISPOSE ALL SEDIMENT AND DEBRIS TO A PRE-APPROVED LOCATION.
- REFER TO THE STORMWATER POLLUTION PREVENTION PLAN (SWPPP) FOR ADDITIONAL INFORMATION PERTAINING TO STORMWATER FACILITY OPERATION AND MAINTENANCE REQUIREMENTS. MAINTAIN A WORKING COPY OF THE SWPPP ON SITE AT ALL TIMES.
- AT A MINIMUM INSPECT MONTHLY AND AFTER STORM EVENTS GREATER THAN OR EQUAL TO 1" OF RAINFALL AS NECESSARY FOR THE ENTIRE DURATION OF THE CONSTRUCTION PROJECT AND THE FIRST 3 MONTHS AFTER CONSTRUCTION TO ENSURE PROPER OPERATION AND EFFECTIVE SITE STABILIZATION.
- SPECIFIC MAINTENANCE REQUIRED DURING CONSTRUCTION:
- A. <u>DRAINAGE STRUCTURES (INLETS, MANHOLES, CATCHBASINS, UNDERGROUND INFILTRATION STRUCTURES)</u>: MONITOR AND REGULARLY INSPECT ALL EXISTING AND PROPOSED DRAINAGE STRUCTURES FOR PROPER OPERATION, COLLECTION OF LITTER OR TRASH, AND STRUCTURAL DETERIORATION. CLEAN AND REMOVE SEDIMENT FRO THE STRUCTURES (INCLUDING SUMPS) AS NECESSARY, AND REPAIR WHEN REQUIRED.
- B. ROUTINE MAINTENANCE: OTHER ROUTINE MAINTENANCE INCLUDES THE REMOVAL OF TRASH AND LITTER FROM PAVED AND PERIMETER AREAS, AND STREET AND PARKING LOT SWEEPING UPON COMPLETION OF CONSTRUCTION TO AVOID EXCESSIVE ACCUMULATION OF SEDIMENT IN THE DRAINAGE SYSTEM. INSPECT THE PIPES AND STRUCTURES FOR SEDIMENT ACCUMULATION AND PROPER FLOW.

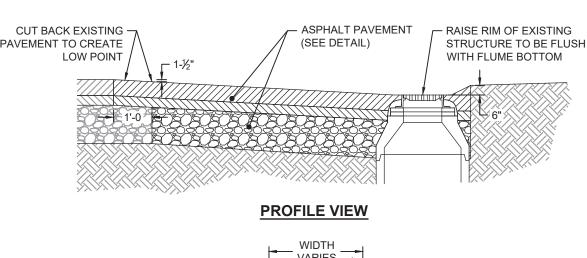
LEGEND:

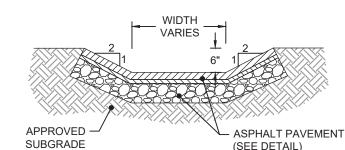


WHERE TWO UTILITIES CROSS, USE FLOWABLE FILL FOR BACKFILL (INCLUDING DISTURBED AREAS

- SURROUNDING TRENCHES) AT THE AREA OF THE PIPE CROSSINGS. THE FLOWBALE FILL MIX MUST BE FINE ENOUGH TO FILL THE VOID SPACE BETWEEN THE CROWN OF
- THE PIPE BELOW AND THE BOTTOM OF PIPE ABOVE. 3. THE FLOW ABLE FILL MUST ENCOMPASS THE ENTIRE SPACE BETWEEN THE PIPES AS WELL AS AROUND THE PIPES.

STORM DRAIN PIPE/UTILITY CROSSING NOT TO SCALE




SUB-GRADE (EXISTING MATERIAL) SHALL CONSIST OF INERT MATERIAL THAT IS HARD, DURABLE STONE AND/OR COARSE SAND, FREE FROM LOAM AND CLAY TO A DEPTH NOT LESS THAN 4 FEET BELOW THE FINISH PAVEMENT SURFACE. EXCAVATE SANDY-LOAM AND/OR LOAMY-SAND TOPSOIL MATERIAL FROM ALL PAVED AREAS PRIOR TO SUB-BASE INSTALLATION.

APPROVED SUBGRADE

- 2. PLACE SUB-BASE IN MAXIMUM 6" LIFTS (COMPACTED TO 95%). COMPACT SUB-GRADE FILL TO 95% COMPACTION.
- SEE SITE LAYOUT PLAN FOR PAVEMENT WIDTH AND LOCATION SEE GRADING PLANS FOR PAVEMENT SLOPE AND CROSS SLOPE

TYPICAL BITUMINOUS PAVEMENT

CHANNEL SECTION VIEW

PAVED FLUME

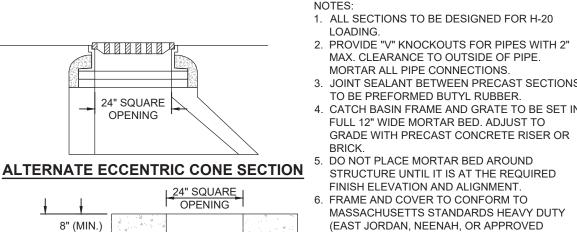
PRECAST DRAIN MANHOLE (DMH NOT TO SCALE

ACCESS

∠ STEPS (SEE

ALTERNATE TOP SLAB

24" DIA


ACCESS

COMPACTED -

SUBGRADE

----- 48" DIA. -

── NOTE 2)

EQUIVALENT) 7. PIPE HOOD TO BE HDPE, FIBERGLASS, OR PVO

APPROVED COMPACTED SUBGRADE

1. ALL SECTIONS TO BE DESIGNED FOR H-20

2. COPOLYMER MANHOLE STEPS TO BE

MORTAR ALL PIPE CONNECTIONS.

4. JOINT SEALANT BETWEEN PRECAST

SECTIONS TO BE PREFORMED BUTYL

6. DO NOT PLACE MORTAR BED AROUND

FINISH ELEVATION AND ALIGNMENT.

7. FRAME AND COVER TO CONFORM TO

DUTY (EAST JORDAN, NEENAH, OR

APPROVED EQUIVALENT).

SEE NOTE 4

SEE NOTE 3

COMPACTED 3/4" CRUSHED STONE

SEE SITE PLAN

MASSACHUSETTS STANDARDS HEAVY

5. DRAIN MANHOLE FRAME AND COVER TO BE

SET IN FULL 12" MORTAR BED. ADJUST TO

GRADE WITH PRECAST CONCRETE RISER

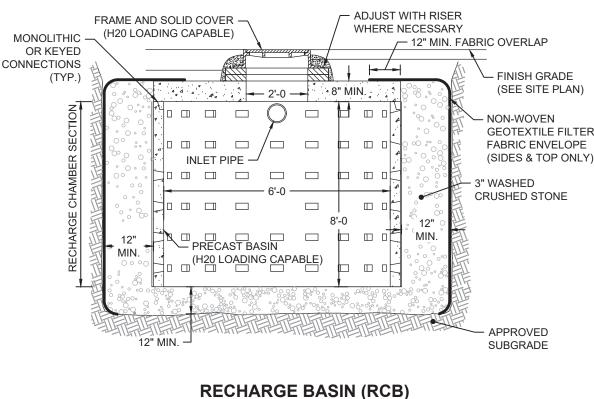
STRUCTURE UNTIL IT IS AT THE REQUIRED

୯ଟ୍ରବ୍ରବ୍ରବ୍ୟ

 $\mathbf{\Omega}$

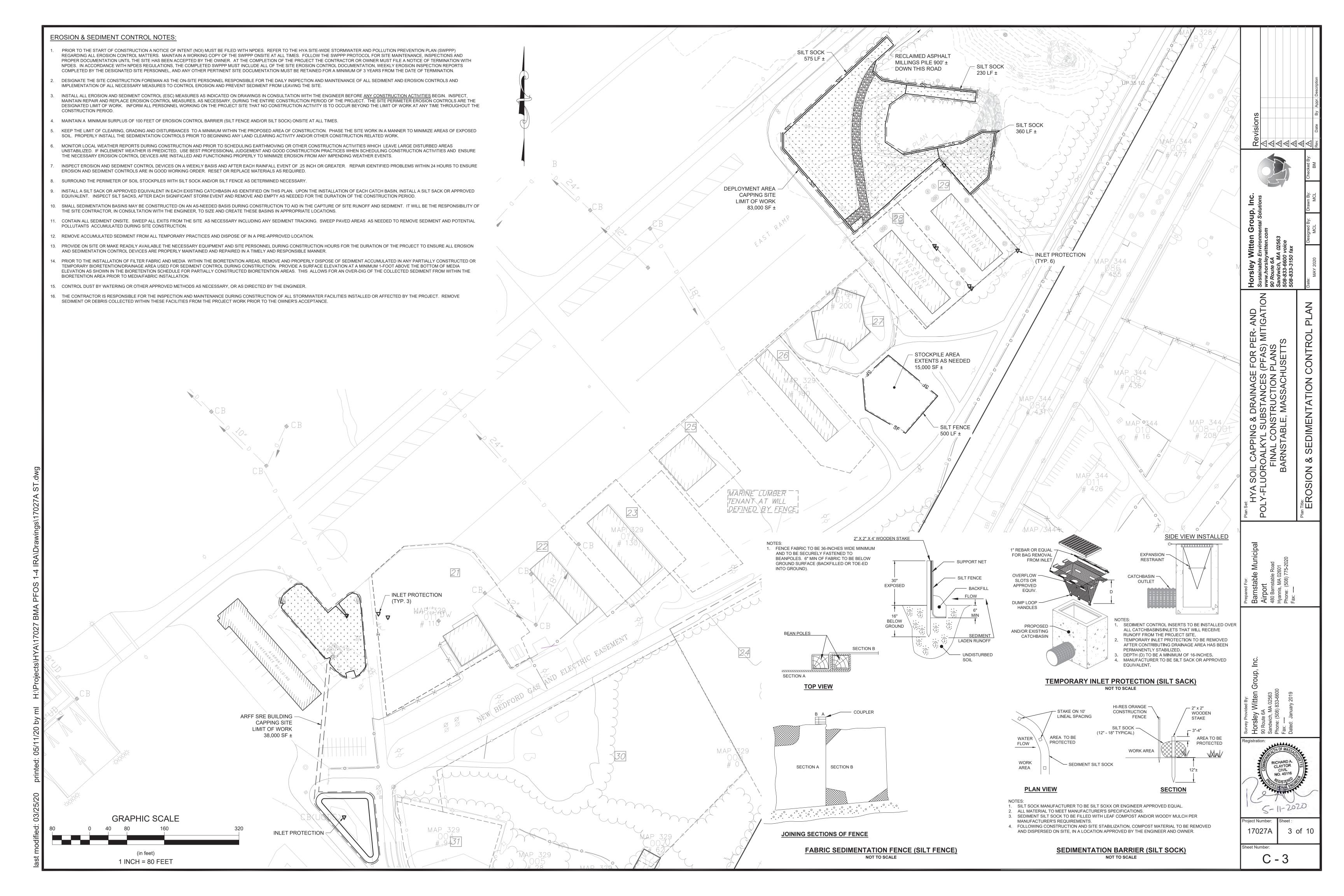
DEPTH OF THE STRUCTURE.

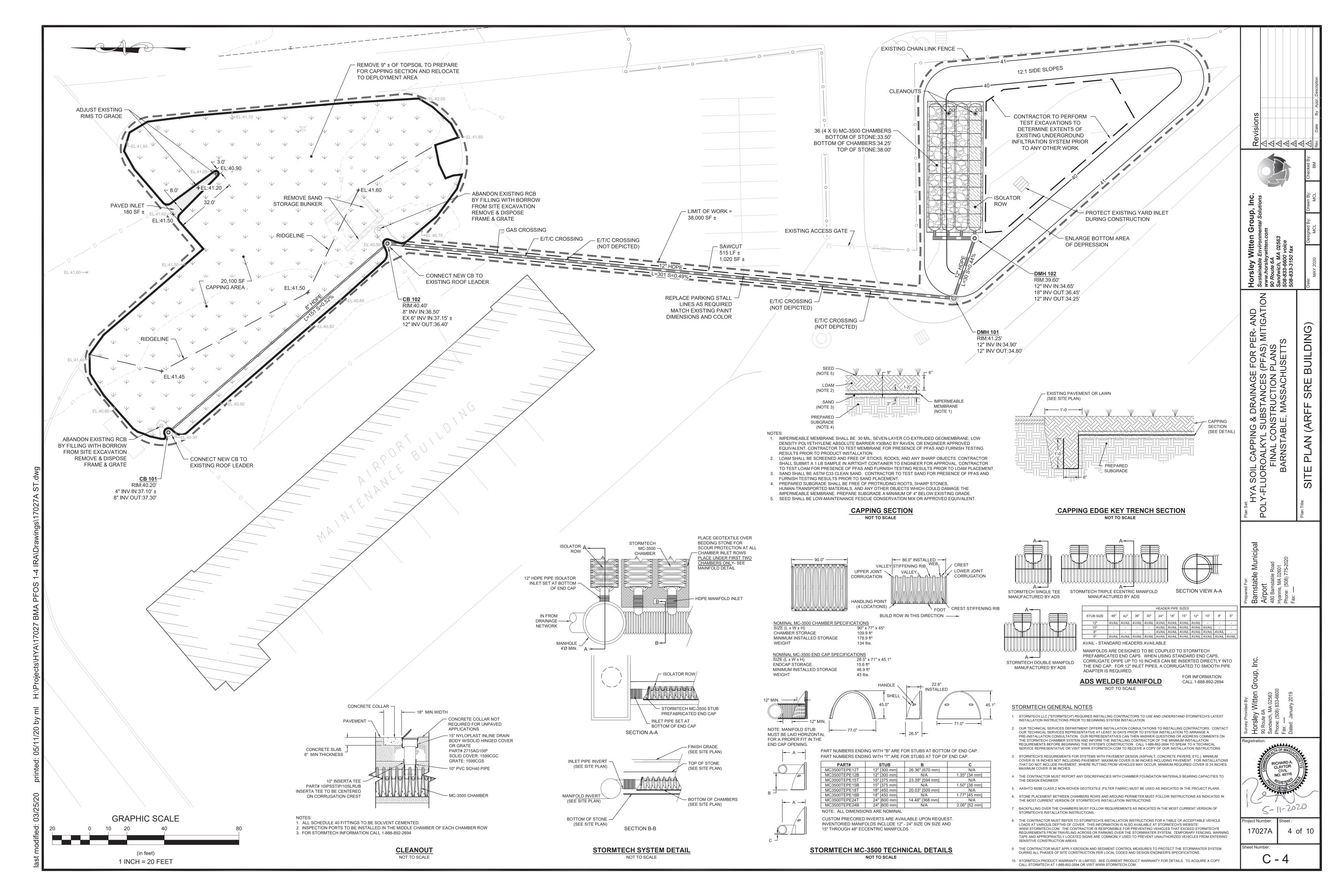
INSTALLED AT 12" O.C. FOR THE FULL

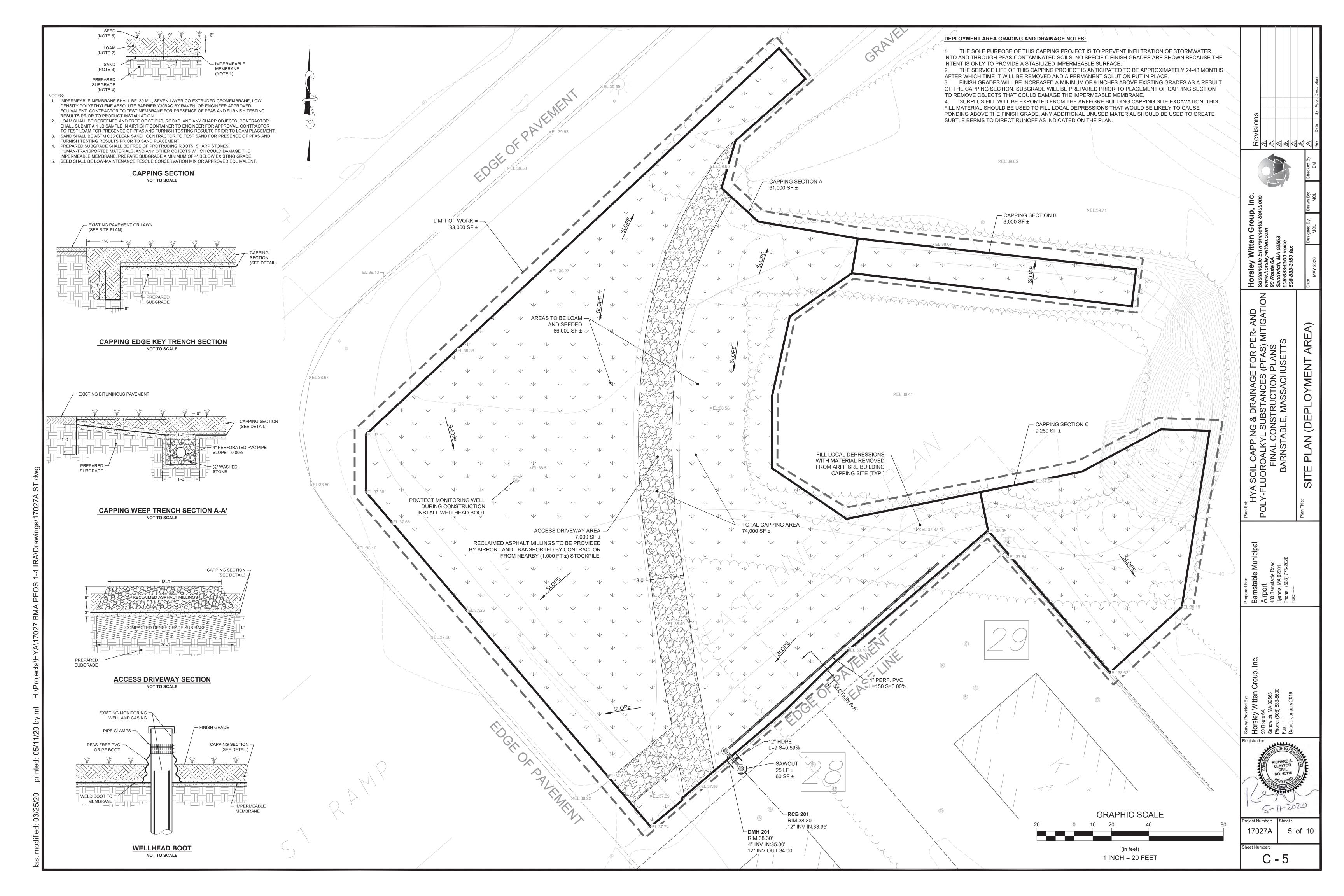

3. PROVIDE "V" KNOCKOUTS FOR PIPES WITH

2" MAX. CLEARANCE TO OUTSIDE OF PIPE.

– 48" DIA. (MIN.) — – ALTERNATE FLAT TOP SLAB 3/4" WASHED




PRECAST CONCRETE CATCH BASIN (CB) WITH HOOD NOT TO SCALE



2 of 10

eet Number

GENERAL NOTES

AIRPORT MANAGER

1. THE AIRPORT MANAGER AND/OR HIS/HER DESIGNEE HAVE THE AUTHORITY TO OPEN AND CLOSE AIRPORT FACILITIES, ISSUE AND CANCEL NOTAM'S AND TO COORDINATE WITH AIRPORT USERS. THE AIRPORT MANAGER IS THE SOLE AUTHORITY WITH RESPECT TO AIRPORT OPERATIONS, SAFETY AND SECURITY.

AIRPORT SAFETY AND SECURITY

- 2.THE CONTRACTOR SHALL INSTALL AND MAINTAIN SAFETY AND SECURITY MEASURES THROUGHOUT THE PROJECT, INCLUDING BUT NOT LIMITED TO: WORKER SAFETY, PEDESTRIAN SITE ACCESS AND SAFETY, AIRFIELD AND OFF—AIRPORT TRAFFIC SAFETY DIRECTLY IMPACTED BY THE PROJECT, PEDESTRIAN ACCESS AND SAFETY MEASURES FOR ACCESSING AIRPORT FACILITIES THAT ARE IMPACTED BY THE PROJECT.
- 3. THE CONTRACTOR SHALL COMPLY WITH ALL AIRPORT SECURITY REQUIREMENTS AS DIRECTED BY THE AIRPORT MANAGER OR HIS/HER DESIGNEE. THE CONTRACTOR SHALL COMPLY WITH BADGING PER AIRPORT REQUIREMENTS.
- 4. THE CONTRACTOR SHALL BE RESPONSIBLE FOR CONTROLLING ACCESS TO THE WORK AREA AND ENSURING THAT SECURITY WITHIN THE CONTRACTOR'S LIMIT OF WORK IS MAINTAINED AT ALL TIMES. THE FAA CAN IMPOSE SIGNIFICANT FINES FOR SECURITY VIOLATIONS AND INCURSIONS INTO ACTIVE AIRCRAFT OPERATION AREAS (AOA). THE CONTRACTOR SHALL PAY ALL FINES ASSESSED AGAINST THE AIRPORT DUE TO VIOLATIONS CAUSED BY THE CONTRACTOR AND HIS/HER PERSONNEL, SUBCONTRACTORS AND VENDORS.
- 5.PARKING PERSONAL VEHICLES SHALL BE IN DESIGNATED LOCATIONS ONLY, BUT NOT WITHIN AN ACTIVE CONSTRUCTION AREA. THE CONTRACTOR, AS A SUBSIDIARY OBLIGATION, SHALL PROVIDE ADEQUATE AND SAFE TRANSPORTATION FOR HIS/HER EMPLOYEES, AND FOR ITS SUBCONTRACTORS AND VENDORS, BETWEEN THE WORK AREAS AND THE LOCATION OF THE PERSONAL VEHICLES. EMPLOYEES AND DRIVERS OF WORK VEHICLES SHALL BE INSTRUCTED AS TO PROPER ACCESS ROADS AND SHALL BE CAUTIONED THAT UNAUTHORIZED ACCESS AND USE OF AIRPORT PAVEMENTS OR OTHER AREAS OUTSIDE THE DESIGNATED WORK AREAS MAY LEAD TO THEIR ARREST AND SUBSEQUENT PAYMENT OF FINES. NO PERSONAL VEHICLES FOR EMPLOYEES OR REPRESENTATIVES OF THE CONTRACTOR OR ITS SUBCONTRACTORS OR VENDORS ARE ALLOWED WITHIN THE AIRCRAFT OPERATIONS AREA.
- 6. THE CONTRACTOR SHALL PROVIDE INSTRUCTION TO ALL OF ITS EMPLOYEES ENGAGED IN THE PROJECT AS WELL AS ALL SUBCONTRACTORS AND VENDORS INCLUDING MATERIAL SUPPLIERS REGARDING THE AIRPORT ACCESS PROCEDURES TO BE FOLLOWED BY THEIR DELIVERY DRIVERS. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL ESCORTS OF NON-BADGED EMPLOYEES INCLUDING BUT NOT LIMITED TO MANAGEMENT STAFF, AS WELL AS VENDORS, SUBCONTRACTORS, VISITORS, DELIVERY DRIVERS, AND OTHERS UNDER THE AUTHORITY OF THE CONTRACTOR WHILE ON THE AIRPORT.
- 7.THE CONTRACTOR SHALL SUBMIT TO THE ENGINEER AND THE OWNER PRIOR TO THE START OF WORK, A WRITTEN CONSTRUCTION MANAGEMENT PLAN WHICH DETAILS AMONG OTHER THINGS, THE PRECAUTIONS HE/SHE PROPOSES FOR THE CONTROL OF ITS WORK INCLUDING VEHICLE TRAFFIC INCLUDING POLICE DETAILS, FLAG PERSONS, SIGNS, BARRICADES AND ANY OTHER MEASURES HE/SHE PROPOSES. THE OWNER AND ENGINEER WILL REVIEW AND APPROVE THE PROPOSED PLAN; THE CONTRACTOR SHALL COMPLY WITH THE APPROVED DOCUMENT. STOPPAGE OF WORK BY THE OWNER FOR NON-CONFORMANCE SHALL NOT CONSTITUTE A VALID REASON FOR EXTENDING CONTRACT TIME OR FOR ANY CLAIM OF ADDITIONAL COMPENSATION BY THE CONTRACTOR.
- 8. THE CONTRACTOR'S PERSONNEL AND CONTRACTOR'S VEHICLES SHALL BE RESTRICTED TO AND SHALL REMAIN WITHIN THE WORK AREAS, HAUL AND ACCESS ROUTES, AND THE STAGING AREAS AS SHOWN ON THE CONTRACT PLANS.
- 9. THE CONTRACTOR IS RESPONSIBLE FOR MAINTAINING SECURITY WHEN USING AIRPORT GATES TO ACCESS THE CONSTRUCTION SITE. GATES SHALL BE CLOSED AND LOCKED WHEN NOT IN USE. WHEN GATE(S) ARE IN USE IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO PROVIDE A DEDICATED GATE GUARD TO MONITOR THE CONSTRUCTION TRAFFIC, AS WELL AS VEHICULAR AND PEDESTRIAN ACCESS WHICH MAY CONFLICT WITH THE CONTRACTOR'S OPERATION. LIQUIDATED DAMAGES MAY BE APPLICABLE FOR A VIOLATION OF THIS REQUIREMENT SEE SPECIFICATIONS.

AIRCRAFT OPERATIONS AREA (AOA)

- 10. IN GENERAL, THE WORK ASSOCIATED WITH THIS PROJECT WILL REQUIRE THE CONTRACTOR TO BE NEAR OR WITHIN THE AIRCRAFT OPERATIONS AREA (AOA). THE AOA IS ANY AREA OF AN AIRPORT USED OR INTENDED TO BE USED FOR LANDING, TAKEOFF, OR SURFACE MANEUVERING OF AIRCRAFT. AN AOA INCLUDES SUCH PAVED OR TURF AREAS THAT ARE USED OR INTENDED TO BE USED FOR THE UNOBSTRUCTED MOVEMENT OF AIRCRAFT IN ADDITION TO ITS ASSOCIATED RUNWAY, TAXIWAY, OR APRON.
- 11. FOR THIS PROJECT, THE CONTRACTOR SHALL KEEP HIS/HER PERSONNEL AND EQUIPMENT OUTSIDE OF THE TAXIWAY / RUNWAY SAFETY AREAS PER THE CONSTRUCTION SAFETY AND PHASING PLAN (CSPP).
- 12. THE CONTRACTOR SHALL FURNISH, INSTALL, MAINTAIN, AND RELOCATE SAFETY BARRICADES. THE CONTRACTOR SHALL MAINTAIN THE BARRICADES ON A REGULAR BASIS AND IN ACCORDANCE WITH THE CONTRACTOR'S APPROVED CONSTRUCTION MANAGEMENT PLAN.

- 13. PRIOR TO THE RE-OPENING OF THE WORK AREA(S), THE CONTRACTOR SHALL RELOCATE ALL MATERIALS AND EQUIPMENT OUT OF THE AOA TO THE STAGING AREA, REMOVE STOCKPILES, BACKFILL AND COMPACT TRENCHES AND EXCAVATIONS, AND RESTORE GRADES PER THE CONTRACT DOCUMENTS, AND MECHANICALLY SWEEP ALL PAVED AREAS TO REMOVE ALL DEBRIS, MAKING SURE THAT CLEANUP AND SWEEPING OPERATIONS ARE COMPLETED WITH NO ADVERSE IMPACT TO AIRPORT OPERATIONS. STREET SWEEPING AND OTHER SOIL INTRUSIVE ACTIVITES SHALL BE CONDUCTED IN A MANNER THAT DOES NOT GENERATE FUGITIVE DUST EMISSIONS. SITE SOILS CONTAIN PFAS. APPROPRIATE DUST SUPPRESSION TECHNIQUES ARE CONSIDERED INCIDENTAL TO THE PROJECT. THE OWNER WILL PROVIDE DUST MONITORING AT THE SITE UNDER THE DIRECTION OF A LICENSED SITE PROFESSIONAL.
- 14. THE CONTRACTOR SHALL KEEP ACTIVE PAVED SURFACES CLEAN AND CLEAR OF CONSTRUCTION MATERIAL, FOREIGN OBJECTS, DIRT, GRAVEL, AND DEBRIS, AND SHALL REMOVE SUCH MATERIALS FROM ACTIVE PAVED SURFACES WITHIN 15 MINUTES OF VERBAL NOTICE FROM THE AIRPORT MANAGER OR HIS/HER DESIGNEE OR THE ENGINEER. THE CONTRACTOR SHALL PROVIDE A MANNED VAC SWEEPER DURING ALL TIMES WHEN ACTIVE AOA PAVEMENTS ARE CROSSED AT NO ADDITIONAL COST TO THE OWNER.
- 15. THE CONTRACTOR MUST STAY WITHIN THE LIMITS OF THE WORK AREA, DESIGNATED HAUL ROADS, AND STAGING AREAS AT ALL TIMES WHILE OPERATING AT THE AIRPORT. THE CONTRACTOR SHALL PAY CAREFUL ATTENTION TO WORK AREA REQUIREMENTS AND ENSURE THAT ITS OWN PERSONNEL AS WELL AS SUBCONTRACTORS AND VENDORS UNDERSTAND WHICH AREAS ARE ACTIVE (TO AIRCRAFT MOVEMENT) AND WHICH AREAS ARE CLOSED DURING CONSTRUCTION ACTIVITIES.
- 16. ALL OF THE CONTRACTOR'S EQUIPMENT AND VEHICLES, INCLUDING ESCORT VEHICLES, SHALL BE EQUIPPED WITH A 3' X 3' CHECKERED ORANGE AND WHITE FLAG WITH COMPANY IDENTIFICATION PLAINLY VISIBLE ON BOTH SIDES OF THE VEHICLE, AS WELL AS AMBER FLASHING ROTATING BEACONS.

OPEN TRENCHES OR EXCAVATIONS

- 17. THE CONTRACTOR WILL NOT BE PERMITTED TO LEAVE TRENCHES OR OTHER EXCAVATIONS OPEN AT NIGHT, ON WEEKENDS, OR AT OTHER TIMES WHEN THE CONTRACTOR IS NOT ON THE WORK SITE, UNLESS APPROVAL IS RECEIVED BY THE AIRPORT MANAGER AND THE CONTRACTOR PROTECTS THE EXCAVATION AS MAY BE APPROPRIATE TO MAINTAIN SAFETY AND SECURITY, INCLUDING BUT NOT LIMITED TO THE USE OF STEEL PLATES, BARRICADES, AND LIGHTING, AS APPROVED BY THE ENGINEER.
- IN ADDITION, NO EXCAVATION EXCEEDING 3 INCHES IN DEPTH SHALL BE LEFT OPEN WITHIN THE AOA, AS DESCRIBED ABOVE, WHILE THE WORK AREA(S) ARE IN USE UNLESS THE EXCAVATIONS ARE COVERED WITH APPROVED STEEL PLATES AND/OR OTHER MEASURES AS MAY BE REQUIRED TO MAINTAIN SAFETY AND SECURITY. STEEL PLATES SHALL BE CAPABLE OF BEARING THE HEAVIEST AIRCRAFT/VEHICLE USING THE AIRPORT OVER THE SPAN OF TIME IN WHICH THEY ARE TO BE USED.
- 18. ALL EXCAVATIONS SHALL BE BACK FILLED, COMPACTED AND THE PAVEMENT REPAIRED AND PROPERLY CURED PRIOR TO THE AREA BEING REOPENED TO TRAFFIC. ALL EXCAVATION REQUIRED SHALL BE CONSTRUCTED PER THE CONTRACT DOCUMENTS, INCLUDING DEPTH OF EXCAVATION, SIDEWALL STABILIZATION, BACKFILL, COMPACTION. ETC.

DEBRIS AND DUST CONTROL

19. THE CONTRACTOR SHALL STRICTLY CONTROL DEBRIS AND LITTER AT ITS WORK SITE(S) FOR THE PROJECT. MUD, STONES OR OTHER DEBRIS RESULTING FROM CONSTRUCTION OPERATIONS SHALL BE PROMPTLY AND COMPLETELY REMOVED FROM ALL PAVEMENTS TO FACILITATE DAILY AIRCRAFT OPERATIONS AND A CLEAN ENVIRONMENT. DUST CONTROL MEASURES SHALL BE TAKEN AS NECESSARY BY THE CONTRACTOR TO ENSURE THAT NO DUST PRODUCED BY CONSTRUCTION ACTIVITY IS ALLOWED TO DRIFT INTO THE AOA, INTO LOCATIONS WHERE AIRCRAFT ARE PARKED AT ANY TIME, OR SURROUNDING RESIDENCES OR BUSINESSES. THE CONTRACTOR SHALL ENSURE THAT ALL PUBLIC ROADS ARE CONTINUOUSLY MAINTAINED FREE OF MUD AND DEBRIS THAT MAY RESULT FROM ITS OPERATIONS INCLUDING OPERATIONS ASSOCIATED WITH ITS SUBCONTRACTOR AND VENDORS. DEBRIS AND DUST CONTROL MEASURES SHALL BE CONSIDERED INCIDENTAL TO THE CONTRACT. THE CONTRACTOR SHALL PROVIDE A MANNED VAC SWEEPER DURING ALL TIMES WHEN ACTIVE AOA PAVEMENTS ARE CROSSED AT NO ADDITIONAL COST TO THE OWNER.

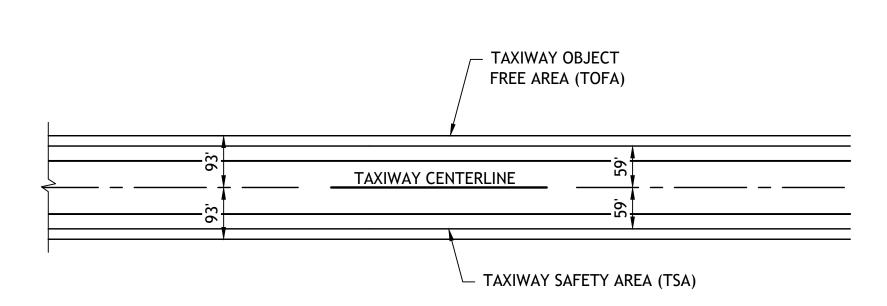
CONTRACTOR'S STAGING AREAS

- 20. THE CONTRACTOR SHALL USE THE AREAS SHOWN ON THE PLANS FOR HIS/HER STAGING AREA(S). NO OTHER AREAS ARE APPROVED WITHOUT THE EXPLICIT CONSENT OF THE AIRPORT MANAGER AND THE ENGINEER. THE CONTRACTOR IS RESPONSIBLE FOR ANY AND ALL IMPROVEMENT AND RESTORATION OF THE DESIGNATED STAGING AREAS SUCH AS GRUBBING, GRADING, AND CONSTRUCTION OF STABILIZED ACCESS ROADS, THAT IS NECESSARY FOR THE UTILIZATION OF THE AREA. THE CONTRACTOR SHALL ALSO BE RESPONSIBLE FOR ANY TEMPORARY ACCESS PERMITS AND ASSOCIATED FEES FOR ACCESS TO THE ADJACENT ROAD NETWORK. THERE WILL BE NO SEPARATE PAYMENT FOR THIS WORK. THE COST FOR ALL WORK NECESSARY TO ESTABLISH, USE AND RESTORE THE STAGING AREA(S) SHALL BE DEEMED INCIDENTAL TO THE OVERALL PROJECT.
- 21. THE CONTRACTOR SHALL MAINTAIN THE STAGING AREA(S), AND THE PROJECT SITE, IN A NEAT MANNER AND PREVENT TRASH, DUST, AND DEBRIS FROM BLOWING INTO ABUTTING AREAS.

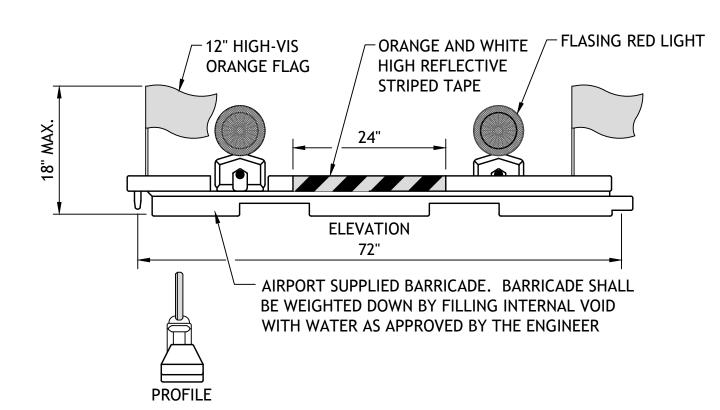
GENERAL NOTES

- 22.IF THE OWNER REQUIRES WEEKLY JOB MEETINGS, THE TIME AND DATE WILL BE DETERMINED BY MUTUAL AGREEMENT OF THE OWNER, CONTRACTOR AND ENGINEER. ENGINEER WILL CONDUCT THE MEETING. AT A MINIMUM THE CONTRACTOR SHALL PROVIDE IT'S PROJECT MANAGER, SITE SUPERINTENDENT(S) AND OTHER KEY PERSONNEL THAT THE CONTRACTOR FEELS IS NECESSARY TO ATTEND THE MEETING. THE MEETING SHALL ALSO BE ATTENDED BY A REPRESENTATIVE OF EACH SUBCONTRACTOR THAT IS PERFORMING WORK AT THE TIME OF THE MEETING, OR BY A SUBCONTRACTOR THAT MAY PLAY A CRITICAL ROLE IN ANY PARTICULAR MEETING. THE MEETING MAY ALSO BE ATTENDED BY THE AIRPORT MANAGER OR HIS/HER DESIGNEE, AND OTHER INVITED PARTIES.
- 23. THE CONTRACTOR SHALL PROVIDE A WRITTEN UPDATE TO THE PROJECT SCHEDULE AT EACH WEEKLY JOB MEETING; AN ELECTRONIC COPY OF THE SCHEDULE SHALL ALSO BE PROVIDED TO THE OWNER AND ENGINEER VIA EMAIL ON THE DATE OF EACH WEEKLY JOB MEETING. AT A MINIMUM, THE PROJECT SCHEDULE SHALL INCLUDE THE STATUS OF EACH PAY ITEM BY NOTING THE PERCENT COMPLETE TO DATE AND THE CORRESPONDING ANTICIPATED COMPLETION DATE. THE CONTRACTOR SHALL ALSO INDICATE THE STATUS OF THE OVERALL PROJECT INDICATING WHETHER THE PROJECT IS ON SCHEDULE, AHEAD OF SCHEDULE, OR BEHIND SCHEDULE.
- 24. THE CONTRACTOR SHALL SUBMIT A CONSTRUCTION MANAGEMENT PLAN FOR REVIEW AND APPROVAL BY ENGINEER. AT A MINIMUM, THIS PLAN SHALL INCLUDE, BUT NOT LIMITED TO, THE FOLLOWING ELEMENTS:
- a.PROJECT SCHEDULE UPDATED WEEKLY
- b.24—HOUR CONTACT INFORMATION FOR KEY PERSONNEL, INCLUDING: PROJECT MANAGER, SITE SUPERINTENDENT(S), AND 24—HOUR CONTACT INFORMATION FOR ALL SUBCONTRACTORS.
- c.SITE SECURITY PLAN
- d.DUST CONTROL
- e.CONSTRUCTION SAFETY MEASURES PURSUANT TO THE CONSTRUCTION SAFETY AND PHASING PLAN

CLOSEOUT DELIVERABLES AND FINAL PAYMENT


- 25. THE CONTRACTOR SHALL COMPLETE AND PROVIDE THE FOLLOWING DOCUMENTS AND DELIVERABLES BEFORE FINAL PAYMENT:
- a.AS-BUILT PLANS, STAMPED BY PLS SUBCONTRACTOR b.AUTOCAD DRAWING OF AS-BUILT PLANS c.PROJECT PHOTOGRAPHS d.CONTRACTOR WARRANTY e.LIEN WAIVERS
- e.LIEN WAIVERS
 f. FINAL CERTIFIED PAYROLL
- g.EQUIPMENT / O&M MANUALS, AS REQUIRED
- 26.THE CONTRACTOR IS RESPONSIBLE FOR THE PREPARATION OF ITS OWN HEALTH AND SAFETY PLAN CONSISTENT WITH OSHA. PFAS IS LOCATED WITHIN SITE SOILS. REFER TO DOCUMENT TITLED "FINAL IMMEDIATE RESPONSE ACTION PLAN MODIFICATION", PREPARED BY THE HORSELY WITTEN GROUP, INC. AND DATED DECEMBER 2019

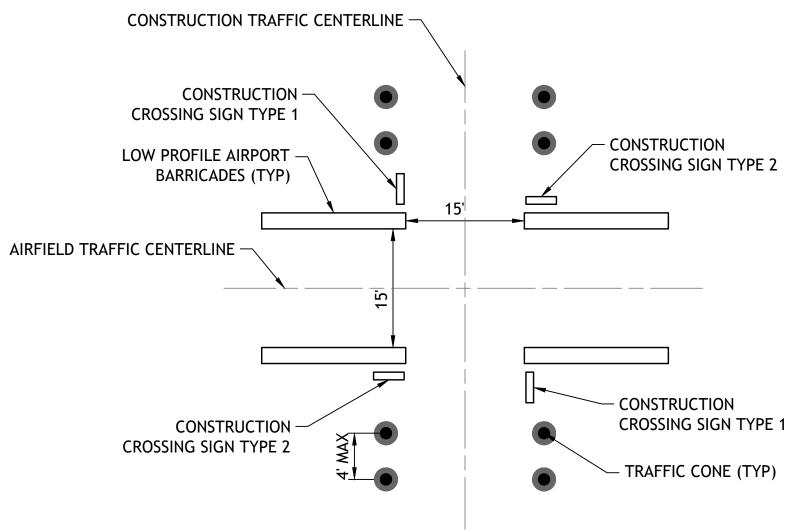
SHEET TITLE			PROJECT	NO DATE	DESCRIPTION	ΒY
	PROJECT NO.	17027A				
CONSTRUCTION SAFETY	DESIGNED BY	PEJ	PFAS MITIGATION			
AND PHASING PLAN -	DRAWN BY	PEJ				
CENEDAL NOTES	CHECKED BY	7/7	GMANED			
GENERAL NOTES	OI LOIKE DI	25	OWINEI			
	DATE	MARCH 2020	Edoddie ledicielle alaemonde			
T 1400 01110400	ו ו	222	BAKNSTABLE MUNICIPAL AIRPURI			
GRAPHIC SCALE	DRAWING SCALE N.T.S	N.T.S	480 Barnstable Road ● Hvannis, MA 02601			
N.T.S.			(508) 775-2020			


S1.1

6 OF 10

NOTE: NO WORK MAY OCCUR WITHIN THE TSA WITHOUT CLOSING DOWN THE TAXIWAY.

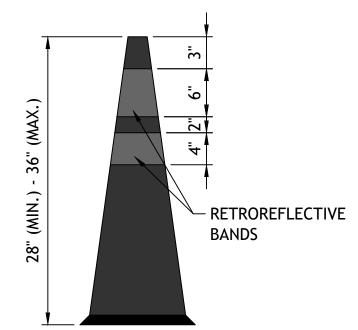
TAXIWAYS B RESTRICTED CONSTRUCTION AREAS SCALE: N.T.S.



- NOTES

 1. THE AIRPORT WILL SUPPLY 210 BARRICADES. IT IS THE CONTRACTORS RESPONSIBILITY TO ENSURE THAT THE BARRICADES MEET FAA REQUIREMENTS FOR VISIBILITY, PER ADVISORY CIRCULAR 150/5370-2G, OR LATEST EDITION, SUCH AS PROVIDING NEW LIGHTS, REPLACEMENT OF BATTERIES, PROVIDING NEW FLAGS, ETC.
- 2. IT IS THE CONTRACTORS RESPONSIBILITY TO TRANSPORT AND PLACE THE BARRICADES FROM THEIR CURRENT LOCATION ON THE AIRPORT TO THE WORK AREA. IT IS ALSO THE RESPONSIBILITY OF THE CONTRACTOR TO RETURN THE BARRICADES BACK TO THEIR ORIGINAL AIRPORT STORAGE AREA UPON COMPLETION OF THE PROJECT.
- 3. IT IS THE CONTRACTORS RESPONSIBILITY TO ENSURE THAT THE BARRICADES ARE RETURNED IN A LIKE OR BETTER CONDITION. ANY BARRICADES DAMAGED BY THE CONTRACTOR SHALL BE REPLACED IN KIND BY THE CONTRACTOR AT THEIR COST.
- 4. BARRICADE LIGHTS SHALL HAVE RED LENSES AND LED LAMPS AND ORANGE FLAGS. 5. DURING CONSTRUCTION, THE CONTRACTOR SHALL PROVIDE THE NECESSARY SAFETY BARRICADES TO ENSURE THE SAFETY OF AIRCRAFT, AIRCRAFT PASSENGERS, AIRFIELD
- EMPLOYEES, THE PUBLIC, AND THE CONTRACTOR'S EMPLOYEES. 6. BARRICADES SHALL BE IN PLACE EACH DAY TO DELINEATE THE WORK AREA AND TO RESTRICT ANY AIRCRAFT FROM TAXIING INTO THE ACTIVE WORK AREA. PLACEMENT AND LOCATION OF BARRICADES SHALL BE APPROVED BY THE ENGINEER ON A DAILY BASIS AND COORDINATED WITH THE AIRPORT MANAGER.
- 7. BARRICADES SHALL BE WEIGHTED WITH WATER TO RESIST WIND, PROP WASH, AND JET BLAST.
- 8. MAXIMUM ALLOWABLE HEIGHT IS 18 INCHES. STANDARD TYPE HIGHWAY BARRICADES,
- BARRELS, AND CONES ARE NOT ACCEPTABLE FOR AIRPORT BARRICADES.
- 9. THE BARRICADES SHOWN ON THE PLAN DO NOT REPRESENT THE QUANTITY OF BARRICADES BUT REPRESENTS THE LOCATION.

LOW PROFILE AIRPORT BARRICADE


SCALE: N.T.S.

NOTE: CONSTRUCTION SITE CROSSING TO BE IMPLEMENTED DURING WORK AREA IB.

CONSTRUCTION SITE CROSSING

SCALE: N.T.S.

- 1. TRAFFIC CONES MUST MEET THE REQUIREMENTS OF THE MANUAL ON UNIFORM TRAFFIC CONTROL DEVICES, LATEST EDITION.
- 2. DURING CONSTRUCTION, THE CONTRACTOR SHALL PROVIDE THE NECESSARY TRAFFIC CONES TO ENSURE THE SAFETY OF AIRCRAFT, AIRCRAFT PASSENGERS, AIRFIELD EMPLOYEES, THE PUBLIC, AND THE CONTRACTOR'S EMPLOYEES.
- 3. CONES SHALL BE IN PLACE EACH DAY TO DELINEATE THE WORK AREA AND TO RESTRICT ANY AIRCRAFT FROM TAXIING INTO THE ACTIVE WORK AREA. PLACEMENT AND LOCATION OF CONES SHALL BE APPROVED BY THE ENGINEER ON A DAILY BASIS AND COORDINATED WITH THE AIRPORT MANAGER.
- 4. CONES SHALL BE WEIGHTED TO RESIST WIND, PROP WASH, AND JET BLAST.
- 5. MAXIMUM ALLOWABLE SPACING OF CONES IS TEN (10) FEET. SEE DRAWINGS.

CONSTRUCTION CROSSING SIGN

TYPE 1 SCALE: N.T.S. CONSTRUCTION CROSSING SIGN TYPE 2

DO NOT TURN

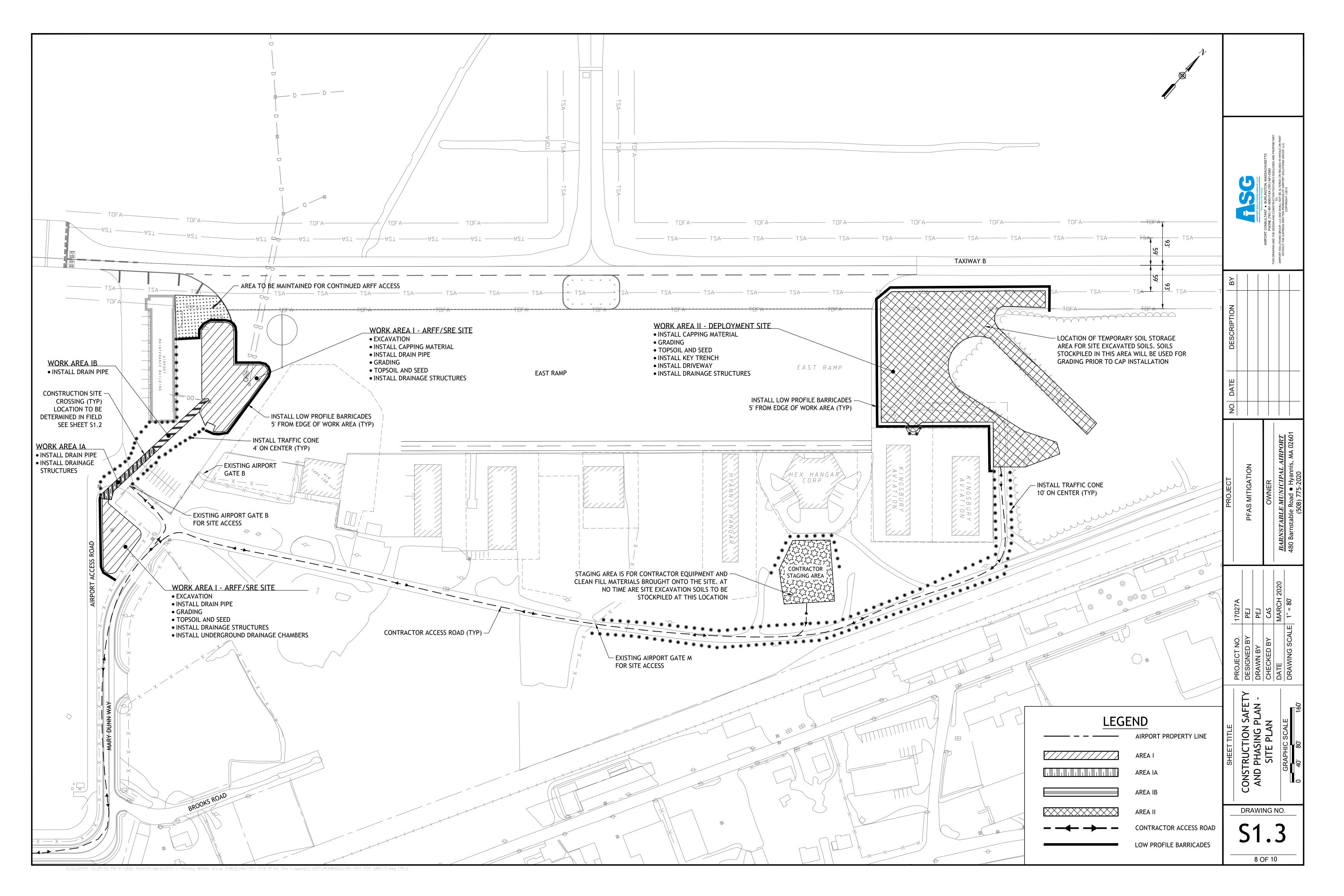
SCALE: N.T.S.

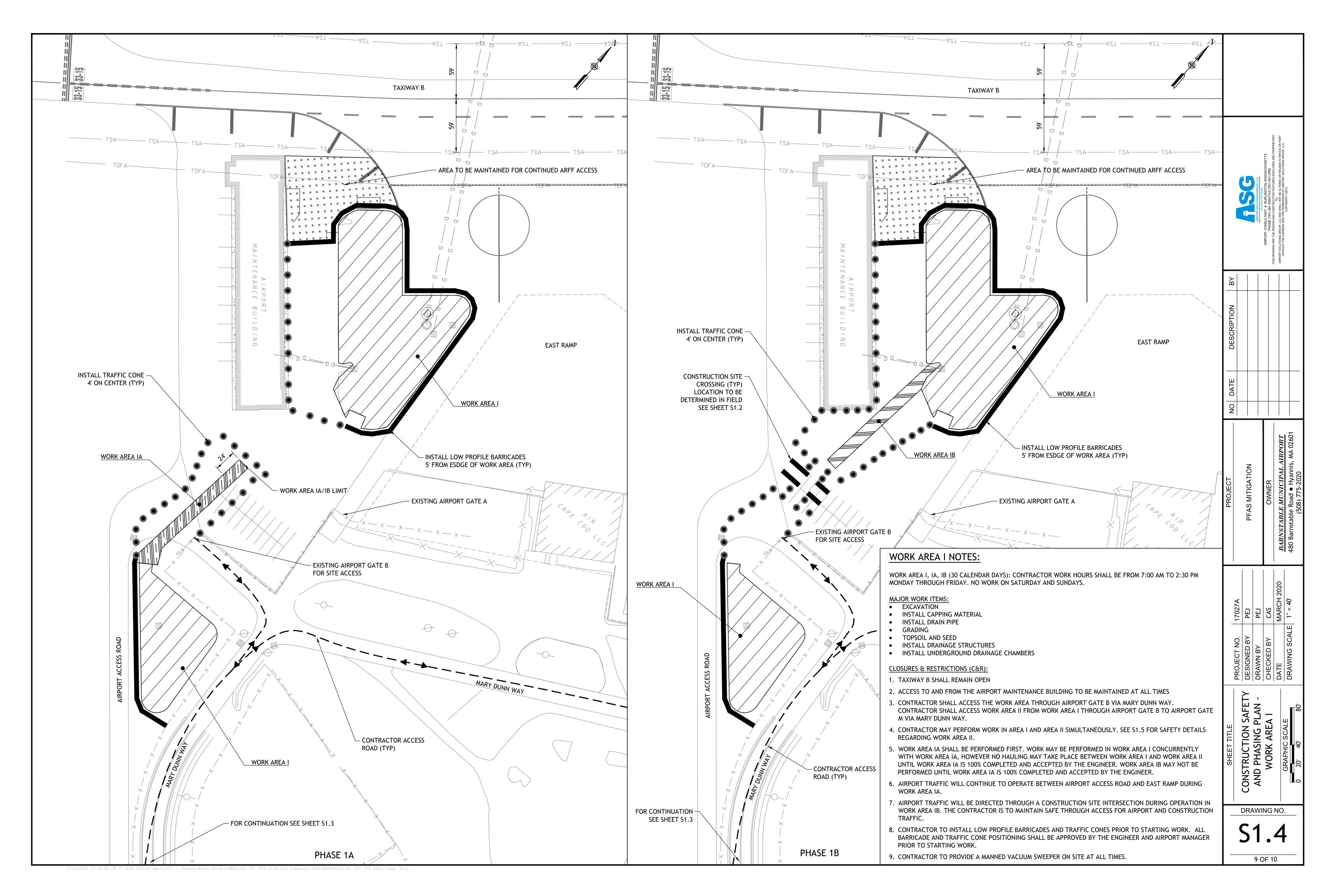
NOTES:

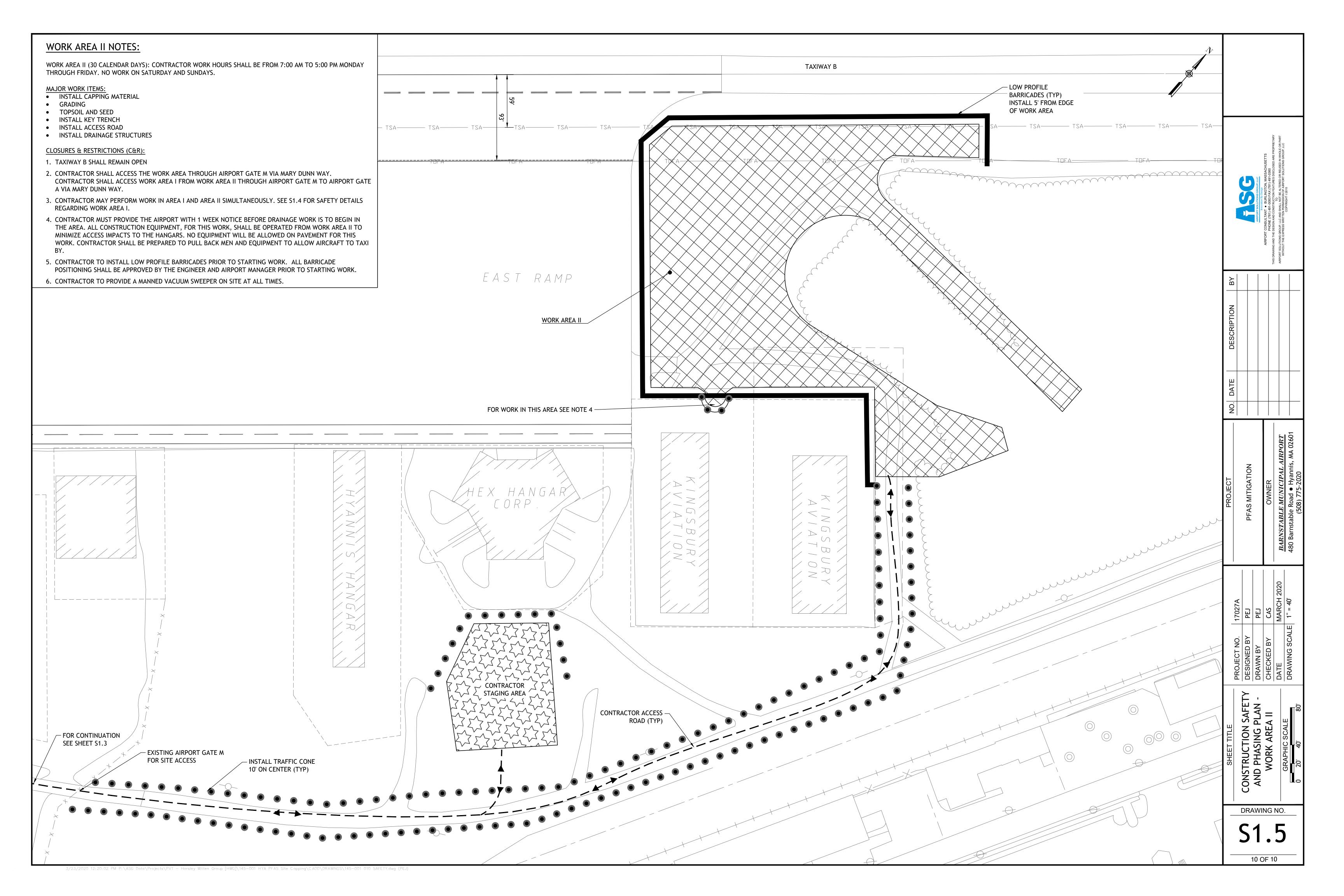
- 1. "WATCH FOR CROSSING TRAFFIC" SIGNS SHALL BE DESIGNED PER W20-1 SIGN IN THE MANUAL ON UNIFORM TRAFFIC CONTROL DEVICES (MUTCD), 2009 EDITION.
- 2. "DO NOT TURN" SIGNS SHALL BE DESIGNED PER R3-3 SIGN IN THE MANUAL ON UNIFORM TRAFFIC CONTROL DEVICES (MUTCD), 2009 EDITION.
- 3. SIGNS SHALL CONFORM TO THE DIMENSIONS AND MATERIAL REQUIRED IN THE MANUAL ON UNIFORM TRAFFIC CONTROL DEVICES (MUTCD), 2009 EDITION.
- 4. SIGN MOUNTING TO BE APPROVED BY ENGINEER.
- 5. SIGNS SHALL BE OF RETROREFLECTIVE MATERIAL AND MEET THE MINIMUM REQUIREMENTS LISTED IN THE MANUAL ON UNIFORM TRAFFIC CONTROL DEVICES (MUTCD), 2009 EDITION.
- 6. SIGNS SHALL BE PLACED AS INDICATED ON THE PLANS OR AS DIRECTED BY THE ENGINEER OR AIRPORT.

TEMPORARY CONSTRUCTION SIGNS

SCALE: N.T.S.




111	_		PROJECT	NO. DATE	\TE	DESCRIPTION	<u> </u>
	PROJECT NO.	17027A		i i i)
SAFETY	DESIGNED BY	PEJ	INCITACITIM SATION				
- NV IO	Va MMA	DEI					
	79 7977977	0 4 0					
•	OTIECNED BI	CAS	OWINER				
	DATE	MARCH 2020					
L		100 11 2020	BARNSTABLE MUNICIPAL AIRPORT				
Ļ	N T N T I I I I I I I I I I I I I I I I	<i>U</i> ⊢ Z	100 Att 1:22.21 - Lagaritation 001				
		0.	460 barnstable Road ● ⊓yannis, MA U2601				
			(508) 775-2020				


ONST

DRAWING NO.

7 OF 10

Laboratory Analysis Reports

May 20, 2020

Bryan Massa Horsley Witten Group 90 Route 6A Unit #1 Sandwich, MA 02563

Project Location: Barnstable Airport

Client Job Number: Project Number: 19128

Laboratory Work Order Number: 20E0260

M M Corthy

Enclosed are results of analyses for samples received by the laboratory on May 7, 2020. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Raymond J. McCarthy Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	5
20E0260-01	5
20E0260-02	7
20E0260-03	8
20E0260-04	9
20E0260-05	10
Sample Preparation Information	11
QC Data	12
1,4-Dioxane by isotope dilution GC/MS	12
B257825	12
Semivolatile Organic Compounds by - LC/MS-MS	13
B257729	13
Flag/Qualifier Summary	14
Certifications	15
Chain of Custody/Sample Receipt	16

Horsley Witten Group 90 Route 6A Unit #1 Sandwich, MA 02563 ATTN: Bryan Massa

PURCHASE ORDER NUMBER:

REPORT DATE: 5/20/2020

CREINISE GRBER NOMBER

PROJECT NUMBER: 19128

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 20

20E0260

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Barnstable Airport

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
OW-9D	20E0260-01	Ground Water		SOP 434-PFAAS	
				SW-846 8270D-E	
HW-E	20E0260-02	Ground Water		SOP 434-PFAAS	
HW-F	20E0260-03	Ground Water		SOP 434-PFAAS	
HW-2	20E0260-04	Ground Water		SOP 434-PFAAS	
HW-3	20E0260-05	Ground Water		SOP 434-PFAAS	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

SOP 434-PFAAS

Qualifications:

S-21

Surrogate was diluted below its calibration range due to elevated levels of target analytes.

Analyte & Samples(s) Qualified:

13C-PFDA

20E0260-01RE1[OW-9D], 20E0260-02RE1[HW-E], 20E0260-03RE1[HW-F]

13C-PFHxA

20E0260-01RE1[OW-9D], 20E0260-02RE1[HW-E], 20E0260-03RE1[HW-F]

d5-NEtFOSAA

20E0260-01RE1[OW-9D], 20E0260-02RE1[HW-E], 20E0260-03RE1[HW-F]

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the

best of my knowledge and belief, accurate and complete.

Lua Warrengton

Lisa A. Worthington
Technical Representative

Project Location: Barnstable Airport Sample Description: Work Order: 20E0260

Date Received: 5/7/2020

Field Sample #: OW-9D

Sampled: 5/5/2020 11:27

Sample ID: 20E0260-01
Sample Matrix: Ground Water

1,4-Dioxane by isotope dilution GC/MS

							Date	Date/Time	
Analy	lyte Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
1,4-Dioxane	ND	0.19	μg/L	1		SW-846 8270D-E	5/12/20	5/18/20 17:12	CLA
Surrog	gates	% Recovery	Recovery Limits	S	Flag/Qual				
1,4-Dioxane-d8		19.1	15-110					5/18/20 17:12	

Project Location: Barnstable Airport Sample Description: Work Order: 20E0260

Date Received: 5/7/2020

Field Sample #: OW-9D

Sampled: 5/5/2020 11:27

Sample ID: 20E0260-01
Sample Matrix: Ground Water

61-41-	0	C	L 1	COMO MO
Semivolatile	Organic	Compounds	nv - i	LC/W15-W15

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	3.3	2.0	0.64	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 2:17	BLM
Perfluorobutanesulfonic acid (PFBS)	3.2	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 2:17	BLM
Perfluoropentanoic acid (PFPeA)	86	2.0	0.42	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 2:17	BLM
Perfluorohexanoic acid (PFHxA)	71	2.0	0.51	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 2:17	BLM
Perfluorohexanesulfonic acid (PFHxS)	180	2.0	0.77	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 2:17	BLM
Perfluoroheptanoic acid (PFHpA)	44	2.0	0.53	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 2:17	BLM
Perfluoroheptanesulfonic acid (PFHpS)	9.0	2.0	1.0	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 2:17	BLM
Perfluorooctanoic acid (PFOA)	88	2.0	0.71	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 2:17	BLM
Perfluorooctanesulfonic acid (PFOS)	720	20	6.8	ng/L	10		SOP 434-PFAAS	5/11/20	5/20/20 5:42	JFC
Perfluorooctanesulfonamide (FOSA)	ND	2.0	0.83	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 2:17	BLM
6:2 Fluorotelomersulfonic acid (6:2FTS A)	230	20	3.9	ng/L	10		SOP 434-PFAAS	5/11/20	5/20/20 5:42	JFC
Perfluorononanoic acid (PFNA)	150	2.0	0.63	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 2:17	BLM
Perfluorodecanoic acid (PFDA)	ND	2.0	0.62	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 2:17	BLM
Perfluorodecanesulfonic acid (PFDS)	ND	2.0	0.51	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 2:17	BLM
N-EtFOSAA	ND	2.0	0.70	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 2:17	BLM
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	2.0	1.1	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 2:17	BLM
Perfluoroundecanoic acid (PFUnA)	ND	2.0	0.49	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 2:17	BLM
N-MeFOSAA	ND	2.0	0.62	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 2:17	BLM
Perfluorododecanoic acid (PFDoA)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 2:17	BLM
Perfluorotridecanoic acid (PFTrDA)	ND	2.0	0.67	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 2:17	BLM
Perfluorotetradecanoic acid (PFTA)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 2:17	BLM

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
13C-PFHxA	92.8	70-130		5/19/20 2:17
13C-PFHxA	*	70-130	S-21	5/20/20 5:42
13C-PFDA	91.9	70-130		5/19/20 2:17
13C-PFDA	*	70-130	S-21	5/20/20 5:42
d5-NEtFOSAA	92.4	70-130		5/19/20 2:17
d5-NEtFOSAA	*	70-130	S-21	5/20/20 5:42

Project Location: Barnstable Airport Sample Description: Work Order: 20E0260

Date Received: 5/7/2020
Field Sample #: HW-E

Sampled: 5/5/2020 14:08

Sample ID: 20E0260-02
Sample Matrix: Ground Water

Semivolatile Organic Compounds by - LC/MS-MS

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	1.6	2.0	0.64	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 2:39	BLM
Perfluorobutanesulfonic acid (PFBS)	0.55	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 2:39	BLM
Perfluoropentanoic acid (PFPeA)	43	2.0	0.42	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 2:39	BLM
Perfluorohexanoic acid (PFHxA)	47	2.0	0.51	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 2:39	BLM
Perfluorohexanesulfonic acid (PFHxS)	11	2.0	0.77	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 2:39	BLM
Perfluoroheptanoic acid (PFHpA)	44	2.0	0.53	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 2:39	BLM
Perfluoroheptanesulfonic acid (PFHpS)	1.7	2.0	1.0	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 2:39	BLM
Perfluorooctanoic acid (PFOA)	27	2.0	0.71	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 2:39	BLM
Perfluorooctanesulfonic acid (PFOS)	3.7	2.0	0.68	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 2:39	BLM
Perfluorooctanesulfonamide (FOSA)	ND	2.0	0.83	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 2:39	BLM
6:2 Fluorotelomersulfonic acid (6:2FTS A)	860	20	3.9	ng/L	10		SOP 434-PFAAS	5/11/20	5/20/20 6:03	JFC
Perfluorononanoic acid (PFNA)	5.2	2.0	0.63	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 2:39	BLM
Perfluorodecanoic acid (PFDA)	ND	2.0	0.62	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 2:39	BLM
Perfluorodecanesulfonic acid (PFDS)	ND	2.0	0.51	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 2:39	BLM
N-EtFOSAA	ND	2.0	0.70	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 2:39	BLM
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	2.0	1.1	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 2:39	BLM
Perfluoroundecanoic acid (PFUnA)	ND	2.0	0.49	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 2:39	BLM
N-MeFOSAA	ND	2.0	0.62	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 2:39	BLM
Perfluorododecanoic acid (PFDoA)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 2:39	BLM
Perfluorotridecanoic acid (PFTrDA)	ND	2.0	0.67	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 2:39	BLM
Perfluorotetradecanoic acid (PFTA)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 2:39	BLM

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
13C-PFHxA	92.8	70-130		5/19/20 2:39
13C-PFHxA	*	70-130	S-21	5/20/20 6:03
13C-PFDA	93.0	70-130		5/19/20 2:39
13C-PFDA	*	70-130	S-21	5/20/20 6:03
d5-NEtFOSAA	90.0	70-130		5/19/20 2:39
d5-NEtFOSAA	*	70-130	S-21	5/20/20 6:03

Project Location: Barnstable Airport Sample Description: Work Order: 20E0260

Date Received: 5/7/2020
Field Sample #: HW-F

Sampled: 5/5/2020 15:08

Sample ID: 20E0260-03
Sample Matrix: Ground Water

Semivolatile Organic Compounds by	v -	LC/MS-MS
-----------------------------------	-----	----------

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	9.7	2.0	0.64	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 3:22	BLM
Perfluorobutanesulfonic acid (PFBS)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 3:22	BLM
Perfluorobutanesulfonic acid (PFBS)	16	40	9.9	ng/L	20		SOP 434-PFAAS	5/11/20	5/20/20 10:32	JFC
Perfluoropentanoic acid (PFPeA)	430	40	8.5	ng/L	20		SOP 434-PFAAS	5/11/20	5/20/20 10:32	JFC
Perfluorohexanoic acid (PFHxA)	460	40	10	ng/L	20		SOP 434-PFAAS	5/11/20	5/20/20 10:32	JFC
Perfluorohexanesulfonic acid (PFHxS)	5.0	2.0	0.77	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 3:22	BLM
Perfluoroheptanoic acid (PFHpA)	230	40	11	ng/L	20		SOP 434-PFAAS	5/11/20	5/20/20 10:32	JFC
Perfluoroheptanesulfonic acid (PFHpS)	ND	2.0	1.0	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 3:22	BLM
Perfluorooctanoic acid (PFOA)	20	2.0	0.71	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 3:22	BLM
Perfluorooctanesulfonic acid (PFOS)	0.86	2.0	0.68	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 3:22	BLM
Perfluorooctanesulfonamide (FOSA)	ND	2.0	0.83	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 3:22	BLM
6:2 Fluorotelomersulfonic acid (6:2FTS A)	1500	40	7.8	ng/L	20		SOP 434-PFAAS	5/11/20	5/20/20 10:32	JFC
Perfluorononanoic acid (PFNA)	0.81	2.0	0.63	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 3:22	BLM
Perfluorodecanoic acid (PFDA)	ND	2.0	0.62	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 3:22	BLM
Perfluorodecanesulfonic acid (PFDS)	ND	2.0	0.51	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 3:22	BLM
N-EtFOSAA	ND	2.0	0.70	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 3:22	BLM
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	2.0	1.1	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 3:22	BLM
Perfluoroundecanoic acid (PFUnA)	ND	2.0	0.49	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 3:22	BLM
N-MeFOSAA	ND	2.0	0.62	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 3:22	BLM
Perfluorododecanoic acid (PFDoA)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 3:22	BLM
Perfluorotridecanoic acid (PFTrDA)	ND	2.0	0.67	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 3:22	BLM
Perfluorotetradecanoic acid (PFTA)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 3:22	BLM

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
13C-PFHxA	87.7	70-130		5/19/20 3:22
13C-PFHxA	*	70-130	S-21	5/20/20 10:32
13C-PFDA	96.1	70-130		5/19/20 3:22
13C-PFDA	*	70-130	S-21	5/20/20 10:32
d5-NEtFOSAA	80.2	70-130		5/19/20 3:22
d5-NEtFOSAA	*	70-130	S-21	5/20/20 10:32

Project Location: Barnstable Airport Sample Description: Work Order: 20E0260

Date Received: 5/7/2020
Field Sample #: HW-2

Sampled: 5/5/2020 15:58

Sample ID: 20E0260-04
Sample Matrix: Ground Water

Comirrolatile	Ougania	Compounds	her I	C/MC MC
Semivolatile	Organic	Compounds	nv - i	/C/MS-MS

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	1.3	2.0	0.64	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 3:43	BLM
Perfluorobutanesulfonic acid (PFBS)	0.68	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 3:43	BLM
Perfluoropentanoic acid (PFPeA)	62	2.0	0.42	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 3:43	BLM
Perfluorohexanoic acid (PFHxA)	54	2.0	0.51	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 3:43	BLM
Perfluorohexanesulfonic acid (PFHxS)	6.6	2.0	0.77	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 3:43	BLM
Perfluoroheptanoic acid (PFHpA)	35	2.0	0.53	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 3:43	BLM
Perfluoroheptanesulfonic acid (PFHpS)	ND	2.0	1.0	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 3:43	BLM
Perfluorooctanoic acid (PFOA)	39	2.0	0.71	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 3:43	BLM
Perfluorooctanesulfonic acid (PFOS)	53	2.0	0.68	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 3:43	BLM
Perfluorooctanesulfonamide (FOSA)	ND	2.0	0.83	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 3:43	BLM
6:2 Fluorotelomersulfonic acid (6:2FTS A)	150	4.0	0.78	ng/L	2		SOP 434-PFAAS	5/11/20	5/20/20 6:46	JFC
Perfluorononanoic acid (PFNA)	16	2.0	0.63	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 3:43	BLM
Perfluorodecanoic acid (PFDA)	ND	2.0	0.62	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 3:43	BLM
Perfluorodecanesulfonic acid (PFDS)	ND	2.0	0.51	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 3:43	BLM
N-EtFOSAA	ND	2.0	0.70	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 3:43	BLM
8:2 Fluorotelomersulfonic acid (8:2FTS A)	9.2	2.0	1.1	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 3:43	BLM
Perfluoroundecanoic acid (PFUnA)	ND	2.0	0.49	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 3:43	BLM
N-MeFOSAA	ND	2.0	0.62	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 3:43	BLM
Perfluorododecanoic acid (PFDoA)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 3:43	BLM
Perfluorotridecanoic acid (PFTrDA)	ND	2.0	0.67	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 3:43	BLM
Perfluorotetradecanoic acid (PFTA)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 3:43	BLM
Surrogates		% Reco	verv	Recovery Limits		Flag/Qual				

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
13C-PFHxA	91.0	70-130		5/19/20 3:43
13C-PFHxA	89.3	70-130		5/20/20 6:46
13C-PFDA	94.0	70-130		5/19/20 3:43
13C-PFDA	87.2	70-130		5/20/20 6:46
d5-NEtFOSAA	89.6	70-130		5/19/20 3:43
d5-NEtFOSAA	88.3	70-130		5/20/20 6:46

Project Location: Barnstable Airport Sample Description: Work Order: 20E0260

Date Received: 5/7/2020
Field Sample #: HW-3

Sampled: 5/5/2020 16:46

Sample ID: 20E0260-05
Sample Matrix: Ground Water

Semivolatile Organic Compounds by -	LC/MS-MS
-------------------------------------	----------

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	5.6	2.0	0.64	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 4:05	BLM
Perfluorobutanoic acid (PFBA)	5.5	4.0	1.3	ng/L	2		SOP 434-PFAAS	5/11/20	5/20/20 7:08	JFC
Perfluorobutanesulfonic acid (PFBS)	0.88	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 4:05	BLM
Perfluoropentanoic acid (PFPeA)	330	4.0	0.85	ng/L	2		SOP 434-PFAAS	5/11/20	5/20/20 7:08	JFC
Perfluorohexanoic acid (PFHxA)	210	4.0	1.0	ng/L	2		SOP 434-PFAAS	5/11/20	5/20/20 7:08	JFC
Perfluorohexanesulfonic acid (PFHxS)	8.7	2.0	0.77	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 4:05	BLM
Perfluoroheptanoic acid (PFHpA)	100	2.0	0.53	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 4:05	BLM
Perfluoroheptanesulfonic acid (PFHpS)	1.6	2.0	1.0	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 4:05	BLM
Perfluorooctanoic acid (PFOA)	54	2.0	0.71	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 4:05	BLM
Perfluorooctanesulfonic acid (PFOS)	100	2.0	0.68	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 4:05	BLM
Perfluorooctanesulfonamide (FOSA)	ND	2.0	0.83	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 4:05	BLM
6:2 Fluorotelomersulfonic acid (6:2FTS A)	130	4.0	0.78	ng/L	2		SOP 434-PFAAS	5/11/20	5/20/20 7:08	JFC
Perfluorononanoic acid (PFNA)	21	2.0	0.63	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 4:05	BLM
Perfluorodecanoic acid (PFDA)	1.4	2.0	0.62	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 4:05	BLM
Perfluorodecanesulfonic acid (PFDS)	ND	2.0	0.51	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 4:05	BLM
N-EtFOSAA	ND	2.0	0.70	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 4:05	BLM
8:2 Fluorotelomersulfonic acid (8:2FTS A)	4.1	2.0	1.1	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 4:05	BLM
Perfluoroundecanoic acid (PFUnA)	1.7	2.0	0.49	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 4:05	BLM
N-MeFOSAA	ND	2.0	0.62	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 4:05	BLM
Perfluorododecanoic acid (PFDoA)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 4:05	BLM
Perfluorotridecanoic acid (PFTrDA)	ND	2.0	0.67	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 4:05	BLM
Perfluorotetradecanoic acid (PFTA)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/11/20	5/19/20 4:05	BLM
Surrogates		% Reco	very	Recovery Limits		Flag/Qual				

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
13C-PFHxA	91.5	70-130		5/19/20 4:05
13C-PFHxA	81.7	70-130		5/20/20 7:08
13C-PFDA	89.5	70-130		5/19/20 4:05
13C-PFDA	80.3	70-130		5/20/20 7:08
d5-NEtFOSAA	82.6	70-130		5/19/20 4:05
d5-NEtFOSAA	75.4	70-130		5/20/20 7:08

Sample Extraction Data

Prep Method: SOP 434-PFAAS Analytical Method: SOP 434-PFAAS

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20E0260-01 [OW-9D]	B257729	250	1.00	05/11/20
20E0260-01RE1 [OW-9D]	B257729	250	1.00	05/11/20
20E0260-02 [HW-E]	B257729	250	1.00	05/11/20
20E0260-02RE1 [HW-E]	B257729	250	1.00	05/11/20
20E0260-03 [HW-F]	B257729	250	1.00	05/11/20
20E0260-03RE1 [HW-F]	B257729	250	1.00	05/11/20
20E0260-04 [HW-2]	B257729	250	1.00	05/11/20
20E0260-04RE1 [HW-2]	B257729	250	1.00	05/11/20
20E0260-05 [HW-3]	B257729	250	1.00	05/11/20
20E0260-05RE1 [HW-3]	B257729	250	1.00	05/11/20

Prep Method: SW-846 3510C Analytical Method: SW-846 8270D-E

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20E0260-01 [OW-9D]	B257825	1060	1.00	05/12/20

QUALITY CONTROL

1,4-Dioxane by isotope dilution GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B257825 - SW-846 3510C										
Blank (B257825-BLK1)			•	Prepared: 05	5/12/20 Anal	yzed: 05/18/2	20			
1,4-Dioxane	ND	0.20	μg/L							
Surrogate: 1,4-Dioxane-d8	2.37		μg/L	10.0		23.7	15-110			
LCS (B257825-BS1)				Prepared: 05	5/12/20 Anal	yzed: 05/18/2	20			
1,4-Dioxane	10.3	0.20	μg/L	10.0		103	40-140			
Surrogate: 1,4-Dioxane-d8	2.70		μg/L	10.0		27.0	15-110			
LCS Dup (B257825-BSD1)				Prepared: 05	5/12/20 Anal	yzed: 05/18/2	20			
1,4-Dioxane	10.8	0.20	μg/L	10.0		108	40-140	5.35	30	
Surrogate: 1,4-Dioxane-d8	2.34		μg/L	10.0		23.4	15-110			

QUALITY CONTROL

Semivolatile Organic Compounds by - LC/MS-MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B257729 - SOP 434-PFAAS										
Blank (B257729-BLK1)				Prepared: 05	5/11/20 Analy	zed: 05/19/2	20			
Perfluorobutanoic acid (PFBA)	ND	2.0	ng/L							
Perfluorobutanesulfonic acid (PFBS)	ND	2.0	ng/L							
Perfluoropentanoic acid (PFPeA)	ND	2.0	ng/L							
Perfluorohexanoic acid (PFHxA)	ND	2.0	ng/L							
Perfluorohexanesulfonic acid (PFHxS)	ND	2.0	ng/L							
Perfluoroheptanoic acid (PFHpA)	ND	2.0	ng/L							
Perfluoroheptanesulfonic acid (PFHpS)	ND	2.0	ng/L							
Perfluorooctanoic acid (PFOA)	ND	2.0	ng/L							
Perfluorooctanesulfonic acid (PFOS)	ND	2.0	ng/L							
Perfluorooctanesulfonamide (FOSA)	ND	2.0	ng/L							
:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	2.0	ng/L							
Perfluorononanoic acid (PFNA)	ND	2.0	ng/L							
Perfluorodecanoic acid (PFDA)	ND	2.0	ng/L							
Perfluorodecanesulfonic acid (PFDS)	ND	2.0	ng/L							
N-EtFOSAA	ND	2.0	ng/L							
:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	2.0	ng/L							
erfluoroundecanoic acid (PFUnA)	ND	2.0	ng/L							
I-MeFOSAA	ND	2.0	ng/L							
erfluorododecanoic acid (PFDoA)	ND	2.0	ng/L							
erfluorotridecanoic acid (PFTrDA)	ND	2.0	ng/L							
erfluorotetradecanoic acid (PFTA)	ND	2.0	ng/L							
urrogate: 13C-PFHxA	38.0		ng/L	40.0		94.9	70-130			
urrogate: 13C-PFDA	38.8		ng/L	40.0		97.0	70-130			
urrogate: d5-NEtFOSAA	176		ng/L	160		110	70-130			
LCS (B257729-BS1)				Prepared: 05	5/11/20 Analy	yzed: 05/19/2	20			
Perfluorobutanoic acid (PFBA)	1.53	2.0	ng/L	2.00		76.5	70-130			
Perfluorobutanesulfonic acid (PFBS)	1.80	2.0	ng/L	1.77		102	70-130			
Perfluoropentanoic acid (PFPeA)	1.81	2.0	ng/L	2.00		90.5	70-130			
erfluorohexanoic acid (PFHxA)	1.93	2.0	ng/L	2.00		96.4	70-130			
erfluorohexanesulfonic acid (PFHxS)	1.68	2.0	ng/L	1.82		92.6	70-130			
'erfluoroheptanoic acid (PFHpA)	1.74	2.0	ng/L	2.00		86.9	70-130			
Perfluoroheptanesulfonic acid (PFHpS)	1.91	2.0	ng/L	1.90		101	70-130			
Perfluorooctanoic acid (PFOA)	1.94	2.0	ng/L	2.00		97.2	70-130			
erfluorooctanesulfonic acid (PFOS)	1.94	2.0	ng/L	1.85		105	70-130			
erfluorooctanesulfonamide (FOSA)	1.53	2.0	ng/L	2.00		76.3	70-130			
:2 Fluorotelomersulfonic acid (6:2FTS A)	2.21	2.0	ng/L	2.00		110	70-130			
erfluorononanoic acid (PFNA)	2.10	2.0	ng/L	2.00		105	70-130			
erfluorodecanoic acid (PFDA)	2.01	2.0	ng/L	2.00		100	70-130			
erfluorodecanesulfonic acid (PFDS)	1.85	2.0	ng/L	1.93		95.6	70-130			
I-EtFOSAA	2.08	2.0	ng/L	2.00		104	70-130			
:2 Fluorotelomersulfonic acid (8:2FTS A)	2.38	2.0	ng/L	1.92		124	70-130			
erfluoroundecanoic acid (PFUnA)	2.04	2.0	ng/L	2.00		102	70-130			
N-MeFOSAA	2.16	2.0	ng/L	2.00		108	70-130			
erfluorododecanoic acid (PFDoA)	1.89	2.0	ng/L	2.00		94.6	70-130			
Perfluorotridecanoic acid (PFTrDA)	2.14	2.0	ng/L	2.00		107	70-130			
'erfluorotetradecanoic acid (PFTA)	2.13	2.0	ng/L	2.00		106	70-130			
Surrogate: 13C-PFHxA	35.5		ng/L	40.0		88.8	70-130			
Surrogate: 13C-PFDA	38.2		ng/L	40.0		95.6	70-130			
Surrogate: d5-NEtFOSAA	161		ng/L	160		100	70-130			

S-21

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.

Surrogate was diluted below its calibration range due to elevated levels of target analytes.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	
SOP 434-PFAAS in Water		
Perfluorobutanoic acid (PFBA)	NH-P	
Perfluorobutanesulfonic acid (PFBS)	NH-P	
Perfluoropentanoic acid (PFPeA)	NH-P	
Perfluorohexanoic acid (PFHxA)	NH-P	
Perfluorohexanesulfonic acid (PFHxS)	NH-P	
Perfluoroheptanoic acid (PFHpA)	NH-P	
Perfluorooctanoic acid (PFOA)	NH-P	
Perfluorooctanesulfonic acid (PFOS)	NH-P	
6:2 Fluorotelomersulfonic acid (6:2FTS A)	NH-P	
Perfluorononanoic acid (PFNA)	NH-P	
Perfluorodecanoic acid (PFDA)	NH-P	
N-EtFOSAA	NH-P	
8:2 Fluorotelomersulfonic acid (8:2FTS A)	NH-P	
Perfluoroundecanoic acid (PFUnA)	NH-P	
N-MeFOSAA	NH-P	
Perfluorododecanoic acid (PFDoA)	NH-P	
Perfluorotridecanoic acid (PFTrDA)	NH-P	
Perfluorotetradecanoic acid (PFTA)	NH-P	
SW-846 8270D-E in Water		
1,4-Dioxane	NY	

 $The \ CON-TEST \ Environmental \ Laboratory \ operates \ under \ the \ following \ certifications \ and \ accreditations:$

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2017	100033	03/1/2022
MA	Massachusetts DEP	M-MA100	06/30/2020
CT	Connecticut Department of Publilc Health	PH-0567	09/30/2021
NY	New York State Department of Health	10899 NELAP	04/1/2021
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2021
RI	Rhode Island Department of Health	LAO00112	12/30/2020
NC	North Carolina Div. of Water Quality	652	12/31/2020
NJ	New Jersey DEP	MA007 NELAP	06/30/2020
FL	Florida Department of Health	E871027 NELAP	06/30/2020
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2021
ME	State of Maine	2011028	06/9/2021
VA	Commonwealth of Virginia	460217	12/14/2020
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2020
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2020
NC-DW	North Carolina Department of Health	25703	07/31/2020
PA	Commonwealth of Pennsylvania DEP	68-05812	06/30/2020

*Contest is not responsible for missing samples from prepacked Glassware in freezer? Y / N Prepackaged Cooler? Y / N Glassware in the fridge? Test values your partnership on each project and will try to assist with missing information, but will not b Chain of Custody is a legal document that must be complete and accurate and is used to determine whai analyses the laboratory will perform. Any missing information is not the laboratory's responsibility. Con Disclaimer: Con-Test Labs is not responsible for any omitted information on the Chain of Custody. The ' Matrix Codes: GW = Ground Water WW = Waste Water Total Number Of 2 Preservation Codes: DW = Drinking Water X * Sodium Hydroxide Courter Use Only 5 = Sulfuric Acid B = Sodium Bisulfate SOL = Solid O = Other (please 0 = Other (please H = HCL M = Methanol N = Nitric Acid Non Soxhlet Page of Preservation Code coolers PCB ONLY Soxhlet BACTERIA SL = Sludge PLASTIC VIALS GLASS ENCORE T = Sodium Thiosulfate A = Air S ≠ Soil define) define) possible sample concentration within the Conc H · High; M · Medium; L · Low; C · Clean; U · Please use the following codes to indicate NELAC and Altho-LAP, LLC accredited Chromatogram

AHA-LAP, LLC AIHA-LAP,LLC Code column above: ANALYSIS REQUESTED held accountable. Unknown Other Doc # 381 Rev 2_06262019 BUDXAND 2A79 0-40 As. P Certification Form Required MA MCP Required CT RCP Requires WRTA MA State DW Required RCP Certification Form Requ Y 39 Spruce Street East Longmeadow, MA 01028 ENCORE X BACTERIA EXCEL Field Filtered Field Filtered Lab to Filter Lab to Fitter GLASS PLASTIC School > MBTA jibanez@hasieywitten com CHAIN OF CUSTODY RECORD VIALS MUJE 0 0 0 0 Conc Code 3 ゞ http://www.contestlabs.com ద Municipality Due Date: Brownfield *Matrix Code <u>ک</u> 10-0ay <u>3</u> GRAB GW 3 5 5848 (F) 3-Day 4-Day TET GRAB COMP/GRAB CLP Like Data Pkg Required: SPE GRABG GRABG PFAS 10-Day (std) Ending Date/Time Government mail To: Fax To #: Format: Federal Other: -Day ·Day 2-Day Client Comments: Project Entity BARNSTABLE AIRPORT Beginning Date/Time 90 ROUTE GAISANDIMICH, MA 02563 #10RSLEY WITTEN GROWP Email: info@contestlabs.com Pate/Time: SIIN 1200 170 BARN STABLE ALROPET 1820 Client Sample ID / Description Phone: 413-525-2332 JOEOJEC 27.30 Fax: 413-525-6405 Sate/Time: Date/Time: Date/Time: 0 m - d D 3 Invoice Recipient: BRYAN IMASSA HN - Fエマーの MCCARTHY 9 **13**半 1 MH

5

tinguished by:

(s) : (si

Con-Test Quote Name/Number

Con-Test Work Order#

Sampled By:

Project Manager: |

Project Location: Project Number:

ላ ማ

Address: Phone:

ST-CO

Table of Contents

Received by: (signature)

Comments:

16 of 17

Page

I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples_____

Doc# 277 Rev 5 2017

ogin Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False	}
Statement will be brought to the attention of the Client - State True or False	

Client HOYS	184 Witten	Grouk					1230	
Received By			Date	_5/7/2	0	Time	1820	
How were the samples	In Cooler	<u> </u>	No Cooler		On Ice	<u> </u>	No Ice	
received?	Direct from Samp	ling	'		Ambient		Melted Ice	
181lea mikhin	,	By Gun #	7		Actual Tem	p- 51		
Were samples within	۲	By Blank #			Actual Tem			
Temperature? 2-6°C		Dy Dialik #			s Tampered		11/4	
Was Coc Balin	•	177	_	•	ree With Sar	-	///	
Was COC Relin	•	<u>'</u>	-	5 Chain Agi	ee wiiii Gar	uhies:		
Are there broken/l	- 1	on any sam		Tales recei	ved within ho	oldina tima?	T	
Is COC in ink/ Legible?		· +		npies recen		er Name		
Did COC include all	Client	<u> </u>	_ Analysis _ ID's	<u> </u>		Dates/Times	/	
pertinent Information? Are Sample labels filled	Project	+	. iD3 .		CONCORO	Dates/Timee_		
Are there Lab to Filters?	-	+	•	Who was	s notified?			
Are there Rushes?	•		•		s notified?			
Are there Short Holds?	•	==	•		s notified?			
Is there enough Volume	· ³ ?	+	•		 -		A	
Is there Headspace who		NIA	•	MS/MSD?	Γ	_		
Proper Media/Container	mendels in Conscious.	+	•	Is splitting	samples req	uired?		
Were trip blanks receive		F	•	On COC?	F			
Do all samples have the		NIA	- Acid			Base		
Vials #	Containers:	#			#			#
Unp-	1 Liter Amb.	7)	1 Liter	Plastic		16 oz	Amb.	
HCL-	500 mL Amb.		500 mL	. Plastic		8oz Am		
Meoh-	250 mL Amb.		250 mL	. Plastic	10	4oz Am		
Bisulfate-	Flashpoint		Col./Ba				b/Clear	
DI-	Other Glass			Plastic		End	ore	
Thiosulfate-	SOC Kit		Plastic			Frozen:		
Sulfuric-	Perchlorate		Zipl	lock				
			Unused I	Media				
Vials #	Containers:	#			#		_	#
Unp-	1 Liter Amb.			Plastic		16 oz		
HCL-	500 mL Amb.		·	Plastic		8oz Am		
Meoh-	250 mL Amb.			. Plastic		4oz Am		
Bisulfate-	Col./Bacteria			npoint	ļ	2oz Am		
DI-	Other Plastic	ļ		Glass			core	
Thiosulfate-	SOC Kit			ic Bag		Frozen:		
Sulfuric-	Perchlorate		Zipl	lock				
Comments:								

May 27, 2020

Bryan Massa Horsley Witten Group 90 Route 6A Unit #1 Sandwich, MA 02563

Project Location: Barnstable Airport

Client Job Number: Project Number: 19128

Laboratory Work Order Number: 20E0400

M M Corthy

Enclosed are results of analyses for samples received by the laboratory on May 11, 2020. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Raymond J. McCarthy Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	6
20E0400-01	6
20E0400-02	7
20E0400-03	8
20E0400-04	9
20E0400-05	10
20E0400-06	11
20E0400-07	12
20E0400-08	13
Sample Preparation Information	14
QC Data	15
Semivolatile Organic Compounds by - LC/MS-MS	15
B258207	15
Flag/Qualifier Summary	16
Certifications	17
Chain of Custody/Sample Receipt	18

Horsley Witten Group 90 Route 6A Unit #1 Sandwich, MA 02563 ATTN: Bryan Massa

PURCHASE ORDER NUMBER:

REPORT DATE: 5/27/2020

PROJECT NUMBER: 19128

ANALYTICAL SUMMARY

20E0400 WORK ORDER NUMBER:

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Barnstable Airport

_	FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
	HW-I (S)	20E0400-01	Ground Water		SOP 434-PFAAS	
	HW-I (M)	20E0400-02	Ground Water		SOP 434-PFAAS	
	HW-I (D)	20E0400-03	Ground Water		SOP 434-PFAAS	
	HW-H	20E0400-04	Ground Water		SOP 434-PFAAS	
	OW-9 (S)	20E0400-05	Ground Water		SOP 434-PFAAS	
	OW-9 (M)	20E0400-06	Ground Water		SOP 434-PFAAS	
	OW-18 (S)	20E0400-07	Ground Water		SOP 434-PFAAS	
	OW-18 (M)	20E0400-08	Ground Water		SOP 434-PFAAS	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

SOP 434-PFAAS

Qualifications:

L-01

Laboratory fortified blank /laboratory control sample recovery outside of control limits. Data validation is not affected since all results are "not detected" for all samples in this batch for this compound and bias is on the high side. Analyte & Samples(s) Qualified:

Perfluorotetradecanoic acid (PFTA

B258207-BS1

PF-01

Surrogate recovery is outside of control limits. Sample not re-extracted past holding time per method.

Analyte & Samples(s) Qualified:

13C-PFHxA

20E0400-04[HW-H], 20E0400-05[OW-9 (S)]

PF-05

Opening calibration verification was within control criteria. Closing calibration verification was outside of criteria and biased on the low side. Re-analysis yielded similar non-conformance.

Analyte & Samples(s) Qualified:

Perfluoroheptanesulfonic acid (PFI

S048789-CCV2

S-01

The surrogate recovery for this sample is not available due to sample dilution below the surrogate reporting limit required from high analyte concentration and/or matrix interferences. Analyte & Samples(s) Qualified:

13C-PFDA

20E0400-01RE2[HW-I (S)]

13C-PFHxA

20E0400-01RE2[HW-I (S)]

d5-NEtFOSAA

20E0400-01RE2[HW-I (S)]

S-21

Surrogate was diluted below its calibration range due to elevated levels of target analytes.

Analyte & Samples(s) Qualified:

20E0400-01RE1[HW-I (S)], 20E0400-04RE1[HW-H]

13C-PFHxA

20E0400-01RE1[HW-I (S)], 20E0400-04RE1[HW-H]

d5-NEtFOSAA

20E0400-01RE1[HW-I (S)], 20E0400-04RE1[HW-H]

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington
Technical Representative

Work Order: 20E0400

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Barnstable Airport Sample Description:

Date Received: 5/11/2020
Field Sample #: HW-I (S)

Sampled: 5/8/2020 13:41

Sample ID: 20E0400-01
Sample Matrix: Ground Water

Semivolatile Organic Compounds by	v -	LC/MS-MS
-----------------------------------	-----	----------

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	21	2.0	0.64	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 14:48	JFC
Perfluorobutanesulfonic acid (PFBS)	14	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 14:48	JFC
Perfluoropentanoic acid (PFPeA)	810	40	8.5	ng/L	20		SOP 434-PFAAS	5/20/20	5/26/20 13:04	JFC
Perfluorohexanoic acid (PFHxA)	510	40	10	ng/L	20		SOP 434-PFAAS	5/20/20	5/26/20 13:04	JFC
Perfluorohexanesulfonic acid (PFHxS)	220	40	15	ng/L	20		SOP 434-PFAAS	5/20/20	5/26/20 13:04	JFC
Perfluoroheptanoic acid (PFHpA)	540	40	11	ng/L	20		SOP 434-PFAAS	5/20/20	5/26/20 13:04	JFC
Perfluoroheptanesulfonic acid (PFHpS)	8.6	2.0	1.0	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 14:48	JFC
Perfluorooctanoic acid (PFOA)	290	40	14	ng/L	20		SOP 434-PFAAS	5/20/20	5/26/20 13:04	JFC
Perfluorooctanesulfonic acid (PFOS)	40	2.0	0.68	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 14:48	JFC
Perfluorooctanesulfonamide (FOSA)	ND	2.0	0.83	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 14:48	JFC
6:2 Fluorotelomersulfonic acid (6:2FTS A)	13000	400	78	ng/L	200		SOP 434-PFAAS	5/20/20	5/27/20 16:17	JFC
Perfluorononanoic acid (PFNA)	82	2.0	0.63	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 14:48	JFC
Perfluorodecanoic acid (PFDA)	ND	2.0	0.62	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 14:48	JFC
Perfluorodecanesulfonic acid (PFDS)	ND	2.0	0.51	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 14:48	JFC
N-EtFOSAA	ND	2.0	0.70	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 14:48	JFC
8:2 Fluorotelomersulfonic acid (8:2FTS A)	2.7	2.0	1.1	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 14:48	JFC
Perfluoroundecanoic acid (PFUnA)	ND	2.0	0.49	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 14:48	JFC
N-MeFOSAA	ND	2.0	0.62	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 14:48	JFC
Perfluorododecanoic acid (PFDoA)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 14:48	JFC
Perfluorotridecanoic acid (PFTrDA)	ND	2.0	0.67	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 14:48	JFC
Perfluorotetradecanoic acid (PFTA)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 14:48	JFC
Perfluorotetradecanoic acid (PFTA)	ND	400	100	ng/L	200		SOP 434-PFAAS	5/20/20	5/27/20 16:17	JFC

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
13C-PFHxA	86.2	70-130		5/22/20 14:48
13C-PFHxA	*	70-130	S-21	5/26/20 13:04
13C-PFHxA	*	70-130	S-01	5/27/20 16:17
13C-PFDA	96.4	70-130		5/22/20 14:48
13C-PFDA	*	70-130	S-21	5/26/20 13:04
13C-PFDA	*	70-130	S-01	5/27/20 16:17
d5-NEtFOSAA	84.2	70-130		5/22/20 14:48
d5-NEtFOSAA	*	70-130	S-21	5/26/20 13:04
d5-NEtFOSAA	*	70-130	S-01	5/27/20 16:17

Project Location: Barnstable Airport

Sample Description:

Work Order: 20E0400

Date Received: 5/11/2020 Field Sample #: HW-I (M)

Sampled: 5/8/2020 14:25

Sample ID: 20E0400-02
Sample Matrix: Ground Water

			T C D FC 3 FC
Semivolatile	Organic Con	nnounas by -	LC/MS-MS

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	ND	2.0	0.64	ng/L	1	<u> </u>	SOP 434-PFAAS	5/20/20	5/26/20 13:25	JFC
Perfluorobutanesulfonic acid (PFBS)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/26/20 13:25	JFC
Perfluoropentanoic acid (PFPeA)	2.8	2.0	0.42	ng/L	1		SOP 434-PFAAS	5/20/20	5/26/20 13:25	JFC
Perfluorohexanoic acid (PFHxA)	3.4	2.0	0.51	ng/L	1		SOP 434-PFAAS	5/20/20	5/26/20 13:25	JFC
Perfluorohexanesulfonic acid (PFHxS)	9.1	2.0	0.77	ng/L	1		SOP 434-PFAAS	5/20/20	5/26/20 13:25	JFC
Perfluoroheptanoic acid (PFHpA)	1.2	2.0	0.53	ng/L	1		SOP 434-PFAAS	5/20/20	5/26/20 13:25	JFC
Perfluoroheptanesulfonic acid (PFHpS)	ND	2.0	1.0	ng/L	1		SOP 434-PFAAS	5/20/20	5/26/20 13:25	JFC
Perfluorooctanoic acid (PFOA)	1.8	2.0	0.71	ng/L	1		SOP 434-PFAAS	5/20/20	5/26/20 13:25	JFC
Perfluorooctanesulfonic acid (PFOS)	14	2.0	0.68	ng/L	1		SOP 434-PFAAS	5/20/20	5/26/20 13:25	JFC
Perfluorooctanesulfonamide (FOSA)	ND	2.0	0.83	ng/L	1		SOP 434-PFAAS	5/20/20	5/26/20 13:25	JFC
6:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	2.0	0.39	ng/L	1		SOP 434-PFAAS	5/20/20	5/26/20 13:25	JFC
Perfluorononanoic acid (PFNA)	0.78	2.0	0.63	ng/L	1		SOP 434-PFAAS	5/20/20	5/26/20 13:25	JFC
Perfluorodecanoic acid (PFDA)	ND	2.0	0.62	ng/L	1		SOP 434-PFAAS	5/20/20	5/26/20 13:25	JFC
Perfluorodecanesulfonic acid (PFDS)	ND	2.0	0.51	ng/L	1		SOP 434-PFAAS	5/20/20	5/26/20 13:25	JFC
N-EtFOSAA	ND	2.0	0.70	ng/L	1		SOP 434-PFAAS	5/20/20	5/26/20 13:25	JFC
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	2.0	1.1	ng/L	1		SOP 434-PFAAS	5/20/20	5/26/20 13:25	JFC
Perfluoroundecanoic acid (PFUnA)	ND	2.0	0.49	ng/L	1		SOP 434-PFAAS	5/20/20	5/26/20 13:25	JFC
N-MeFOSAA	ND	2.0	0.62	ng/L	1		SOP 434-PFAAS	5/20/20	5/26/20 13:25	JFC
Perfluorododecanoic acid (PFDoA)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/26/20 13:25	JFC
Perfluorotridecanoic acid (PFTrDA)	ND	2.0	0.67	ng/L	1		SOP 434-PFAAS	5/20/20	5/26/20 13:25	JFC
Perfluorotetradecanoic acid (PFTA)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/26/20 13:25	JFC

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
13C-PFHxA	82.5	70-130		5/26/20 13:25
13C-PFDA	71.8	70-130		5/26/20 13:25
d5-NEtFOSAA	86.0	70-130		5/26/20 13:25

Project Location: Barnstable Airport

Sample Description:

Work Order: 20E0400

Date Received: 5/11/2020
Field Sample #: HW-I (D)

Sampled: 5/8/2020 15:37

Sample ID: 20E0400-03
Sample Matrix: Ground Water

Semivolatile Organic Compounds by - LC/MS-M	s

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	0.75	2.0	0.64	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:31	JFC
Perfluorobutanesulfonic acid (PFBS)	1.1	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:31	JFC
Perfluoropentanoic acid (PFPeA)	22	2.0	0.42	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:31	JFC
Perfluorohexanoic acid (PFHxA)	19	2.0	0.51	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:31	JFC
Perfluorohexanesulfonic acid (PFHxS)	18	2.0	0.77	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:31	JFC
Perfluoroheptanoic acid (PFHpA)	4.6	2.0	0.53	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:31	JFC
Perfluoroheptanesulfonic acid (PFHpS)	ND	2.0	1.0	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:31	JFC
Perfluorooctanoic acid (PFOA)	2.8	2.0	0.71	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:31	JFC
Perfluorooctanesulfonic acid (PFOS)	20	2.0	0.68	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:31	JFC
Perfluorooctanesulfonamide (FOSA)	ND	2.0	0.83	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:31	JFC
6:2 Fluorotelomersulfonic acid (6:2FTS A)	1.6	2.0	0.39	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:31	JFC
Perfluorononanoic acid (PFNA)	ND	2.0	0.63	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:31	JFC
Perfluorodecanoic acid (PFDA)	ND	2.0	0.62	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:31	JFC
Perfluorodecanesulfonic acid (PFDS)	ND	2.0	0.51	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:31	JFC
N-EtFOSAA	ND	2.0	0.70	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:31	JFC
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	2.0	1.1	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:31	JFC
Perfluoroundecanoic acid (PFUnA)	ND	2.0	0.49	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:31	JFC
N-MeFOSAA	ND	2.0	0.62	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:31	JFC
Perfluorododecanoic acid (PFDoA)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:31	JFC
Perfluorotridecanoic acid (PFTrDA)	ND	2.0	0.67	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:31	JFC
Perfluorotetradecanoic acid (PFTA)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:31	JFC

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
13C-PFHxA	76.5	70-130		5/22/20 15:31
13C-PFDA	76.5	70-130		5/22/20 15:31
d5-NEtFOSAA	78.3	70-130		5/22/20 15:31

Project Location: Barnstable Airport

Sample Description:

Work Order: 20E0400

Date Received: 5/11/2020
Field Sample #: HW-H

Sampled: 5/8/2020 16:25

Sample ID: 20E0400-04
Sample Matrix: Ground Water

Semivolatile Organ	ic Compounds by	- LC/MS-MS
--------------------	-----------------	------------

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	21	2.0	0.64	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:53	JFC
Perfluorobutanesulfonic acid (PFBS)	0.56	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:53	JFC
Perfluoropentanoic acid (PFPeA)	470	20	4.2	ng/L	10		SOP 434-PFAAS	5/20/20	5/26/20 14:08	JFC
Perfluorohexanoic acid (PFHxA)	360	20	5.1	ng/L	10		SOP 434-PFAAS	5/20/20	5/26/20 14:08	JFC
Perfluorohexanesulfonic acid (PFHxS)	3.1	2.0	0.77	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:53	JFC
Perfluoroheptanoic acid (PFHpA)	280	20	5.3	ng/L	10		SOP 434-PFAAS	5/20/20	5/26/20 14:08	JFC
Perfluoroheptanesulfonic acid (PFHpS)	ND	2.0	1.0	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:53	JFC
Perfluorooctanoic acid (PFOA)	2.0	2.0	0.71	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:53	JFC
Perfluorooctanesulfonic acid (PFOS)	ND	2.0	0.68	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:53	JFC
Perfluorooctanesulfonamide (FOSA)	ND	2.0	0.83	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:53	JFC
6:2 Fluorotelomersulfonic acid (6:2FTS A)	130	20	3.9	ng/L	10		SOP 434-PFAAS	5/20/20	5/26/20 14:08	JFC
Perfluorononanoic acid (PFNA)	ND	2.0	0.63	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:53	JFC
Perfluorodecanoic acid (PFDA)	ND	2.0	0.62	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:53	JFC
Perfluorodecanesulfonic acid (PFDS)	ND	2.0	0.51	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:53	JFC
N-EtFOSAA	ND	2.0	0.70	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:53	JFC
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	2.0	1.1	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:53	JFC
Perfluoroundecanoic acid (PFUnA)	ND	2.0	0.49	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:53	JFC
N-MeFOSAA	ND	2.0	0.62	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:53	JFC
Perfluorododecanoic acid (PFDoA)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:53	JFC
Perfluorotridecanoic acid (PFTrDA)	ND	2.0	0.67	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:53	JFC
Perfluorotetradecanoic acid (PFTA)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:53	JFC

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
13C-PFHxA	69.6 *	70-130	PF-01	5/22/20 15:53
13C-PFHxA	*	70-130	S-21	5/26/20 14:08
13C-PFDA	75.5	70-130		5/22/20 15:53
13C-PFDA	*	70-130	S-21	5/26/20 14:08
d5-NEtFOSAA	80.8	70-130		5/22/20 15:53
d5-NEtFOSAA	*	70-130	S-21	5/26/20 14:08

Project Location: Barnstable Airport

Sample Description:

Work Order: 20E0400

Date Received: 5/11/2020
Field Sample #: OW-9 (S)

Sampled: 5/8/2020 10:20

Sample ID: 20E0400-05
Sample Matrix: Ground Water

			T C D FC 3 FC
Semivolatile	Organic Con	nnounas by -	LC/MS-MS

	ъ. и	DI	D.	***	D11 41	FI (0 1	25.0	Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	0.78	2.0	0.64	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:14	JFC
Perfluorobutanesulfonic acid (PFBS)	1.2	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:14	JFC
Perfluoropentanoic acid (PFPeA)	19	2.0	0.42	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:14	JFC
Perfluorohexanoic acid (PFHxA)	15	2.0	0.51	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:14	JFC
Perfluorohexanesulfonic acid (PFHxS)	11	2.0	0.77	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:14	JFC
Perfluoroheptanoic acid (PFHpA)	6.4	2.0	0.53	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:14	JFC
Perfluoroheptanesulfonic acid (PFHpS)	ND	2.0	1.0	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:14	JFC
Perfluorooctanoic acid (PFOA)	4.3	2.0	0.71	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:14	JFC
Perfluorooctanesulfonic acid (PFOS)	5.8	2.0	0.68	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:14	JFC
Perfluorooctanesulfonamide (FOSA)	ND	2.0	0.83	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:14	JFC
6:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	2.0	0.39	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:14	JFC
Perfluorononanoic acid (PFNA)	3.3	2.0	0.63	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:14	JFC
Perfluorodecanoic acid (PFDA)	ND	2.0	0.62	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:14	JFC
Perfluorodecanesulfonic acid (PFDS)	ND	2.0	0.51	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:14	JFC
N-EtFOSAA	ND	2.0	0.70	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:14	JFC
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	2.0	1.1	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:14	JFC
Perfluoroundecanoic acid (PFUnA)	ND	2.0	0.49	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:14	JFC
N-MeFOSAA	ND	2.0	0.62	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:14	JFC
Perfluorododecanoic acid (PFDoA)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:14	JFC
Perfluorotridecanoic acid (PFTrDA)	ND	2.0	0.67	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:14	JFC
Perfluorotetradecanoic acid (PFTA)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:14	JFC

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
13C-PFHxA	150 *	70-130	PF-01	5/22/20 16:14
13C-PFDA	101	70-130		5/22/20 16:14
d5-NEtFOSAA	121	70-130		5/22/20 16:14

Project Location: Barnstable Airport

Sample Description:

Work Order: 20E0400

Date Received: 5/11/2020 Field Sample #: OW-9 (M)

Sampled: 5/8/2020 12:02

Sample ID: 20E0400-06
Sample Matrix: Ground Water

Comirrolatile	Ougania	Compounds	her I	C/MC MC
Semivolatile	Organic	Compounds	nv - i	/C/MS-MS

	D 1	DI	D.	***	D11 4	FI (O 1	25.0	Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	1.1	2.0	0.64	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:36	JFC
Perfluorobutanesulfonic acid (PFBS)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:36	JFC
Perfluoropentanoic acid (PFPeA)	31	2.0	0.42	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:36	JFC
Perfluorohexanoic acid (PFHxA)	18	2.0	0.51	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:36	JFC
Perfluorohexanesulfonic acid (PFHxS)	3.3	2.0	0.77	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:36	JFC
Perfluoroheptanoic acid (PFHpA)	6.1	2.0	0.53	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:36	JFC
Perfluoroheptanesulfonic acid (PFHpS)	ND	2.0	1.0	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:36	JFC
Perfluorooctanoic acid (PFOA)	3.5	2.0	0.71	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:36	JFC
Perfluorooctanesulfonic acid (PFOS)	10	2.0	0.68	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:36	JFC
Perfluorooctanesulfonamide (FOSA)	ND	2.0	0.83	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:36	JFC
6:2 Fluorotelomersulfonic acid (6:2FTS A)	4.9	2.0	0.39	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:36	JFC
Perfluorononanoic acid (PFNA)	3.7	2.0	0.63	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:36	JFC
Perfluorodecanoic acid (PFDA)	ND	2.0	0.62	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:36	JFC
Perfluorodecanesulfonic acid (PFDS)	ND	2.0	0.51	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:36	JFC
N-EtFOSAA	ND	2.0	0.70	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:36	JFC
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	2.0	1.1	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:36	JFC
Perfluoroundecanoic acid (PFUnA)	ND	2.0	0.49	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:36	JFC
N-MeFOSAA	ND	2.0	0.62	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:36	JFC
Perfluorododecanoic acid (PFDoA)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:36	JFC
Perfluorotridecanoic acid (PFTrDA)	ND	2.0	0.67	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:36	JFC
Perfluorotetradecanoic acid (PFTA)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:36	JFC

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
13C-PFHxA	81.6	70-130		5/22/20 16:36
13C-PFDA	78.4	70-130		5/22/20 16:36
d5-NEtFOSAA	86.1	70-130		5/22/20 16:36

Project Location: Barnstable Airport

Sample Description:

Work Order: 20E0400

Date Received: 5/11/2020
Field Sample #: OW-18 (S)

Sampled: 5/8/2020 14:25

Sample ID: 20E0400-07
Sample Matrix: Ground Water

Comizzolatila	Organic Compou	ında bızı I	C/MC MC

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	ND	2.0	0.64	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:57	JFC
Perfluorobutanesulfonic acid (PFBS)	0.63	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:57	JFC
Perfluoropentanoic acid (PFPeA)	9.2	2.0	0.42	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:57	JFC
Perfluorohexanoic acid (PFHxA)	8.1	2.0	0.51	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:57	JFC
Perfluorohexanesulfonic acid (PFHxS)	8.5	2.0	0.77	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:57	JFC
Perfluoroheptanoic acid (PFHpA)	3.9	2.0	0.53	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:57	JFC
Perfluoroheptanesulfonic acid (PFHpS)	ND	2.0	1.0	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:57	JFC
Perfluorooctanoic acid (PFOA)	10	2.0	0.71	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:57	JFC
Perfluorooctanesulfonic acid (PFOS)	16	2.0	0.68	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:57	JFC
Perfluorooctanesulfonamide (FOSA)	ND	2.0	0.83	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:57	JFC
6:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	2.0	0.39	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:57	JFC
Perfluorononanoic acid (PFNA)	3.2	2.0	0.63	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:57	JFC
Perfluorodecanoic acid (PFDA)	ND	2.0	0.62	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:57	JFC
Perfluorodecanesulfonic acid (PFDS)	ND	2.0	0.51	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:57	JFC
N-EtFOSAA	ND	2.0	0.70	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:57	JFC
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	2.0	1.1	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:57	JFC
Perfluoroundecanoic acid (PFUnA)	ND	2.0	0.49	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:57	JFC
N-MeFOSAA	ND	2.0	0.62	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:57	JFC
Perfluorododecanoic acid (PFDoA)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:57	JFC
Perfluorotridecanoic acid (PFTrDA)	ND	2.0	0.67	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:57	JFC
Perfluorotetradecanoic acid (PFTA)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:57	JFC

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
13C-PFHxA	78.4	70-130		5/22/20 16:57
13C-PFDA	70.0	70-130		5/22/20 16:57
d5-NEtFOSAA	75.8	70-130		5/22/20 16:57

Project Location: Barnstable Airport

Sample Description:

Work Order: 20E0400

Date Received: 5/11/2020
Field Sample #: OW-18 (M)

Sampled: 5/8/2020 16:16

Sample ID: 20E0400-08
Sample Matrix: Ground Water

6 . 1 . 1			T COMO MO
Semivolatile	Organic	Compounds by	/ - LC/WIS-WIS

	D 1/	DI	DI.	TT *4	D3. 4	FI /O I	N. (1 . 1	Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	2.3	2.0	0.64	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:19	JFC
Perfluorobutanesulfonic acid (PFBS)	3.4	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:19	JFC
Perfluoropentanoic acid (PFPeA)	110	2.0	0.42	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:19	JFC
Perfluorohexanoic acid (PFHxA)	47	2.0	0.51	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:19	JFC
Perfluorohexanesulfonic acid (PFHxS)	70	2.0	0.77	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:19	JFC
Perfluoroheptanoic acid (PFHpA)	7.4	2.0	0.53	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:19	JFC
Perfluoroheptanesulfonic acid (PFHpS)	3.3	2.0	1.0	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:19	JFC
Perfluorooctanoic acid (PFOA)	9.6	2.0	0.71	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:19	JFC
Perfluorooctanesulfonic acid (PFOS)	180	2.0	0.68	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:19	JFC
Perfluorooctanesulfonamide (FOSA)	ND	2.0	0.83	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:19	JFC
6:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	2.0	0.39	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:19	JFC
Perfluorononanoic acid (PFNA)	2.7	2.0	0.63	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:19	JFC
Perfluorodecanoic acid (PFDA)	ND	2.0	0.62	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:19	JFC
Perfluorodecanesulfonic acid (PFDS)	ND	2.0	0.51	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:19	JFC
N-EtFOSAA	ND	2.0	0.70	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:19	JFC
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	2.0	1.1	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:19	JFC
Perfluoroundecanoic acid (PFUnA)	ND	2.0	0.49	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:19	JFC
N-MeFOSAA	ND	2.0	0.62	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:19	JFC
Perfluorododecanoic acid (PFDoA)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:19	JFC
Perfluorotridecanoic acid (PFTrDA)	ND	2.0	0.67	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:19	JFC
Perfluorotetradecanoic acid (PFTA)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:19	JFC

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
13C-PFHxA	82.2	70-130		5/22/20 17:19
13C-PFDA	82.0	70-130		5/22/20 17:19
d5-NEtFOSAA	90.7	70-130		5/22/20 17:19

Sample Extraction Data

Prep Method: SOP 434-PFAAS Analytical Method: SOP 434-PFAAS

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
20E0400-01 [HW-I (S)]	B258207	250	1.00	05/20/20	
20E0400-01RE1 [HW-I (S)]	B258207	250	1.00	05/20/20	
20E0400-01RE2 [HW-I (S)]	B258207	250	1.00	05/20/20	
20E0400-02 [HW-I (M)]	B258207	250	1.00	05/20/20	
20E0400-03 [HW-I (D)]	B258207	250	1.00	05/20/20	
20E0400-04 [HW-H]	B258207	250	1.00	05/20/20	
20E0400-04RE1 [HW-H]	B258207	250	1.00	05/20/20	
0E0400-05 [OW-9 (S)]	B258207	250	1.00	05/20/20	
0E0400-06 [OW-9 (M)]	B258207	250	1.00	05/20/20	
0E0400-07 [OW-18 (S)]	B258207	250	1.00	05/20/20	
0E0400-08 [OW-18 (M)]	B258207	250	1.00	05/20/20	

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Semivolatile Organic Compounds by - LC/MS-MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B258207 - SOP 434-PFAAS										
Blank (B258207-BLK1)				Prepared: 05	5/20/20 Analy	yzed: 05/22/2	20		_	
Perfluorobutanoic acid (PFBA)	ND	2.0	ng/L							
Perfluorobutanesulfonic acid (PFBS)	ND	2.0	ng/L							
Perfluoropentanoic acid (PFPeA)	ND	2.0	ng/L							
Perfluorohexanoic acid (PFHxA)	ND	2.0	ng/L							
Perfluorohexanesulfonic acid (PFHxS)	ND	2.0	ng/L							
Perfluoroheptanoic acid (PFHpA)	ND	2.0	ng/L							
Perfluoroheptanesulfonic acid (PFHpS)	ND	2.0	ng/L							
Perfluorooctanoic acid (PFOA)	ND	2.0	ng/L							
Perfluorooctanesulfonic acid (PFOS)	ND	2.0	ng/L							
Perfluorooctanesulfonamide (FOSA)	ND	2.0	ng/L							
6:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	2.0	ng/L							
Perfluorononanoic acid (PFNA)	ND	2.0	ng/L							
Perfluorodecanoic acid (PFDA)	ND	2.0	ng/L							
Perfluorodecanesulfonic acid (PFDS)	ND	2.0	ng/L							
N-EtFOSAA	ND	2.0	ng/L							
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	2.0	ng/L							
Perfluoroundecanoic acid (PFUnA)	ND	2.0	ng/L							
N-MeFOSAA	ND	2.0	ng/L							
Perfluorododecanoic acid (PFDoA)	ND	2.0	ng/L							
Perfluorotridecanoic acid (PFTrDA)	ND	2.0	ng/L							
Perfluorotetradecanoic acid (PFTA)	ND	2.0	ng/L							
Surrogate: 13C-PFHxA	32.3		ng/L	40.0		80.6	70-130			
Surrogate: 13C-PFDA	31.2		ng/L	40.0		78.0	70-130			
Surrogate: d5-NEtFOSAA	139		ng/L	160		87.0	70-130			
LCS (B258207-BS1)				Prepared: 05	5/20/20 Analy	yzed: 05/22/2	20			
Perfluorobutanoic acid (PFBA)	1.76	2.0	ng/L	2.00		88.2	70-130			
Perfluorobutanesulfonic acid (PFBS)	1.65	2.0	ng/L	1.77		93.3	70-130			
Perfluoropentanoic acid (PFPeA)	1.88	2.0	ng/L	2.00		93.8	70-130			
Perfluorohexanoic acid (PFHxA)	2.02	2.0	ng/L	2.00		101	70-130			
Perfluorohexanesulfonic acid (PFHxS)	1.59	2.0	ng/L	1.82		87.6	70-130			
Perfluoroheptanoic acid (PFHpA)	1.86	2.0	ng/L	2.00		92.9	70-130			
Perfluoroheptanesulfonic acid (PFHpS)	1.52	2.0	ng/L	1.90		80.2	70-130			
Perfluorooctanoic acid (PFOA)	1.97	2.0	ng/L	2.00		98.7	70-130			
Perfluorooctanesulfonic acid (PFOS)	1.98	2.0	ng/L	1.85		107	70-130			
Perfluorooctanesulfonamide (FOSA)	1.73	2.0	ng/L	2.00		86.5	70-130			
6:2 Fluorotelomersulfonic acid (6:2FTS A)	2.35	2.0	ng/L	2.00		117	70-130			
Perfluorononanoic acid (PFNA)	2.04	2.0	ng/L	2.00		102	70-130			
Perfluorodecanoic acid (PFDA)	2.09	2.0	ng/L	2.00		104	70-130			
Perfluorodecanesulfonic acid (PFDS)	1.90	2.0	ng/L	1.93		98.4	70-130			
N-EtFOSAA	2.10	2.0	ng/L	2.00		105	70-130			
3:2 Fluorotelomersulfonic acid (8:2FTS A)	2.12	2.0	ng/L	1.92		110	70-130			
Perfluoroundecanoic acid (PFUnA)	2.20	2.0	ng/L	2.00		110	70-130			
N-MeFOSAA	1.91	2.0	ng/L	2.00		95.5	70-130			
Perfluorododecanoic acid (PFDoA)	2.30	2.0	ng/L	2.00		115	70-130			
Perfluorotridecanoic acid (PFTrDA)	2.59	2.0	ng/L	2.00		129	70-130			
Perfluorotetradecanoic acid (PFTA)	3.20	2.0	ng/L	2.00		160 *	70-130			L-01
Surrogate: 13C-PFHxA	35.9		ng/L	40.0		89.7	70-130			
Surrogate: 13C-PFDA	38.4		ng/L	40.0		96.0	70-130			
Surrogate: d5-NEtFOSAA	173		ng/L	160		108	70-130			

FLAG/QUALIFIER SUMMARY

†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
L-01	Laboratory fortified blank /laboratory control sample recovery outside of control limits. Data validation is not affected since all results are "not detected" for all samples in this batch for this compound and bias is on the high side.
PF-01	Surrogate recovery is outside of control limits. Sample not re-extracted past holding time per method.
PF-05	Opening calibration verification was within control criteria. Closing calibration verification was outside of criteria and biased on the low side. Re-analysis yielded similar non-conformance.
S-01	The surrogate recovery for this sample is not available due to sample dilution below the surrogate reporting limit required from high analyte concentration and/or matrix interferences.
S-21	Surrogate was diluted below its calibration range due to elevated levels of target analytes.

QC result is outside of established limits.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	
SOP 434-PFAAS in Water		
Perfluorobutanoic acid (PFBA)	NH-P	
Perfluorobutanesulfonic acid (PFBS)	NH-P	
Perfluoropentanoic acid (PFPeA)	NH-P	
Perfluorohexanoic acid (PFHxA)	NH-P	
Perfluorohexanesulfonic acid (PFHxS)	NH-P	
Perfluoroheptanoic acid (PFHpA)	NH-P	
Perfluorooctanoic acid (PFOA)	NH-P	
Perfluorooctanesulfonic acid (PFOS)	NH-P	
6:2 Fluorotelomersulfonic acid (6:2FTS A)	NH-P	
Perfluorononanoic acid (PFNA)	NH-P	
Perfluorodecanoic acid (PFDA)	NH-P	
N-EtFOSAA	NH-P	
8:2 Fluorotelomersulfonic acid (8:2FTS A)	NH-P	
Perfluoroundecanoic acid (PFUnA)	NH-P	
N-MeFOSAA	NH-P	
Perfluorododecanoic acid (PFDoA)	NH-P	
Perfluorotridecanoic acid (PFTrDA)	NH-P	
Perfluorotetradecanoic acid (PFTA)	NH-P	

 $The \ CON-TEST \ Environmental \ Laboratory \ operates \ under \ the \ following \ certifications \ and \ accreditations:$

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2017	100033	03/1/2022
MA	Massachusetts DEP	M-MA100	06/30/2020
CT	Connecticut Department of Publilc Health	PH-0567	09/30/2021
NY	New York State Department of Health	10899 NELAP	04/1/2021
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2021
RI	Rhode Island Department of Health	LAO00112	12/30/2020
NC	North Carolina Div. of Water Quality	652	12/31/2020
NJ	New Jersey DEP	MA007 NELAP	06/30/2020
FL	Florida Department of Health	E871027 NELAP	06/30/2020
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2021
ME	State of Maine	2011028	06/9/2021
VA	Commonwealth of Virginia	460217	12/14/2020
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2020
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2020
NC-DW	North Carolina Department of Health	25703	07/31/2020
PA	Commonwealth of Pennsylvania DEP	68-05812	06/30/2020

DOFOYOR

Glassware in freezer? Y / N Prepackaged Cooler? Y / N nissing samples from prepacked *Contest is not responsible for Glassware in the fridge? Disclaimer: Con-Test Labs is not responsible for any omitted information on the Chain of Custody. The Chain of Custody is a legal document that must be complete and accurate and is used to determine wha analyses the laboratory will perform. Any missing information is not the laboratory's responsibility. Coi Fest values your partnership on each project and will try to assist with missing information, but will not I Preservation Codes:1 = IcedH = HCL N = Nitric Acid S = Sulfuric Acid B = Sodium Bisulfate X = Sodium Hydroxide T = Sodium | Matrix Codes:
| GW = Ground Water
| WW = Waste Water
| DW = Drinking Water
| A = Air
| S = Soit
| S Siudge
| SOL = Solid
| SOL = Solid
| O = Other (please
| define| Total Number Of: O = Other (please define) Von Soxhlet Page Lof Soxhlet PCB ONL) coolers ² Preservation Code BACTERIA M = Methanol PLASTIC ENCORE VIALS GLASS Thiosulfate possible sample concentration within the Conc H · High; M · Medium; L · Low; C · Clean; U · Please use the following codes to indicate NELAC and AIHA-LAP, LLC Accredited Chromatogram AIHA-LAP, LLC Code column above: ANALYSIS REQUESTED held accountable. Doc # 381 Rev 2_06262019 MCP Certification Form Required MA MCP Required WRTA CT RCP Require MA State DW Required 2479 ۶ X X 39 Spruce Street East Longmeadow, MA 01028 ENCORE X BACTERIA Field Filtered Field Filtered Lab to Filter Lab to Filter PLASTIC School MWRA MBTA juraneze horskywithn.com GLASS CHAIN OF CUSTODY RECORD VIALS Х 0 0 0 0 Conc Code 又 http://www.contestlabs.com ద Municipality Brownfield Due Date: *Matrix Code 35 10-Day 3-Day 4-Day COMP/GRAB CARAD CLP Like Data Pkg Required X PFAS 10-Day (std)][1 5/8/2 Ending Date/Time 51815 51815 51815 51815 Government Email To: ax To #; Federal ormat: Other: -Day 2-Day -Day Client Comments: Çţ Project Entity 5/2/20 27/20 Beginning Date/Time 21816 HORSLEY MITTEN GROUP BARNSTABLE AIRPORT 1 30 p 177 Email: info@contestlabs.com 1940 0/10/ Client Sample ID / Description ٤ M/81-M0 5/11/2026 Phone: 413-525-2332 9) 81- MO Ne. 11-Date/Time: MINITED HICE (D) H S Date/Time: Fax: 413-525-6405 Date/Time: ate/Time: Date/Time: Date/Time: Date/Time: J invoice Recipient: DRYAN MASSA MCC ARTH! ハるエ D(N ~ HW-130 833-4600 ーヌエ 4 Y Con-Test Quote Name/Number H ٥ 70 CON-LEST elinquished by: (signature) <u>ス</u>エ Received by: (signature) 200 Work Order# Con-Test Project Location: Project Manager: Project Number: % :/q pb ĝ mments: Sampled By: Address: Phone:

Table of Contents

Page 18 of 19

I Have Not Confirmed Sample Container Numbers With Lab Staff Before Relinquishing Over Samples____

Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False

Received By	1 :	399L		Date	5/11/2	<u>²</u>	Time	1940	
How were the san	nples	In Cooler	7	No Cooler	- , -	On Ice	T	No Ice	
received?	•	Direct from Samp	-	- ***		Ambient		Melted Ice	
		Direct nom Gamp	By Gun#			Actual Tem			-
Were samples w									•
Temperature? 2-	-	<u> </u>	By Blank #			Actual Tem		F.	-
Was Custo	-		n_{1a}	••	-	s Tampered		<u>nla</u>	-
Was COC		•		_		ree With Sar	mples?		-
		eaking/loose caps	on any sam	· –	<u> </u>	,		<u> </u>	
s COC in ink/ Leg			_		iples receiv		olding time?		-
Did COC include		Client		_ Analysis _	<u> </u>		er Name		
pertinent Informat		Project		_ ID's _		Collection	Dates/Times	3	-
Are Sample labels		-	F	*		···			
re there Lab to F			<u> </u>	-		s notified?			-
Are there Rushes?			<u>—Ę</u>	-		s notified?			-
re there Short Ho			<u> </u>	-	Who was	s notified?	***************************************		*
s there enough Vo				-					
s there Headspac			<u>nla</u>	-	MS/MSD?		• <u>4N_2</u>	b	
Proper Media/Con				•		samples req	quired?		-
Vere trip blanks re			<u> </u>	_	On COC?	<u> </u>		ſ	
Do all samples hav	ve the	proper pH?		Acid _	n/a	·	Base	$o^{\dagger a}$	
7ials t		Containers:	#			#			#
Jnp-		1 Liter Amb.		1 Liter F				z Amb.	L
-ICL-		500 mL Amb.		500 mL				mb/Clear	<u> </u>
Meoh-		250 mL Amb.		250 mL	········· •	10		mb/Clear	
Bisulfate-		Flashpoint		Col./Ba		 		mb/Clear	
01-		Other Glass	<u> </u>	Other F				ncore	
Thiosulfate-		SOC Kit		Plastic			Frozen:		
Sulfuric-		Perchlorate	<u></u>	Ziplo	ock j				
				Unused N	<u> Aedia</u>				
/ials #		Containers:	#			#			#
Jnp-		1 Liter Amb.		1 Liter F				z Amb.	
ICL-	\longrightarrow	500 mL Amb.	<u> </u>	500 mL				mb/Clear	<u> </u>
Meoh-		250 mL Amb.	<u> </u>	250 mL		<u> </u>		mb/Clear	
Bisulfate-		Col./Bacteria	<u> </u>	Flash		<u> </u>		mb/Clear	
	\longrightarrow	Other Plastic	 '	Other (<u> </u>		ncore	<u>L</u>
DI-		SOC Kit	<u> </u>	Plastic	· · · · · · · · · · · · · · · · · · ·		Frozen:		
OI- Thiosulfate-		Perchlorate		Ziplo	ock j	<u> </u>			
DI-					***************************************				

May 27, 2020

Bryan Massa Horsley Witten Group 90 Route 6A Unit #1 Sandwich, MA 02563

Project Location: Barnstable Airport

Client Job Number: Project Number: 19128

Laboratory Work Order Number: 20E0400

M M Corthy

Enclosed are results of analyses for samples received by the laboratory on May 11, 2020. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Raymond J. McCarthy Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	5
20E0400-01	5
20E0400-02	6
20E0400-03	7
20E0400-04	8
20E0400-05	9
20E0400-06	10
20E0400-07	11
20E0400-08	12
Sample Preparation Information	13
QC Data	14
Semivolatile Organic Compounds by - LC/MS-MS	14
B258207	14
Flag/Qualifier Summary	15
Certifications	16
Chain of Custody/Sample Receipt	17

Horsley Witten Group 90 Route 6A Unit #1 Sandwich, MA 02563 ATTN: Bryan Massa

PURCHASE ORDER NUMBER:

REPORT DATE: 5/27/2020

PROJECT NUMBER: 19128

ANALYTICAL SUMMARY

20E0400 WORK ORDER NUMBER:

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Barnstable Airport

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
HW-I (S)	20E0400-01	Ground Water		SOP 434-PFAAS	
HW-I (M)	20E0400-02	Ground Water		SOP 434-PFAAS	
HW-I (D)	20E0400-03	Ground Water		SOP 434-PFAAS	
HW-H	20E0400-04	Ground Water		SOP 434-PFAAS	
OW-9 (S)	20E0400-05	Ground Water		SOP 434-PFAAS	
OW-9 (M)	20E0400-06	Ground Water		SOP 434-PFAAS	
OW-18 (S)	20E0400-07	Ground Water		SOP 434-PFAAS	
OW-18 (M)	20E0400-08	Ground Water		SOP 434-PFAAS	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

SOP 434-PFAAS

Qualifications:

L-01

Laboratory fortified blank /laboratory control sample recovery outside of control limits. Data validation is not affected since all results are "not detected" for all samples in this batch for this compound and bias is on the high side. Analyte & Samples(s) Qualified:

Perfluorotetradecanoic acid (PFTA

B258207-BS1

PF-01

Surrogate recovery is outside of control limits. Sample not re-extracted past holding time per method.

Analyte & Samples(s) Qualified:

13C-PFHxA

20E0400-04[HW-H], 20E0400-05[OW-9 (S)]

S-01

The surrogate recovery for this sample is not available due to sample dilution below the surrogate reporting limit required from high analyte concentration and/or matrix interferences.

Analyte & Samples(s) Qualified:

20E0400-01RE2[HW-I (S)]

13C-PFHxA

20E0400-01RE2[HW-I (S)]

d5-NEtFOSAA

20E0400-01RE2[HW-I (S)]

S-21

Surrogate was diluted below its calibration range due to elevated levels of target analytes.

Analyte & Samples(s) Qualified:

13C-PFDA

20E0400-01RE1[HW-I(S)], 20E0400-04RE1[HW-H]

13C-PFHxA

20E0400-01RE1[HW-I (S)], 20E0400-04RE1[HW-H]

d5-NEtFOSAA

20E0400-01RE1[HW-I(S)], 20E0400-04RE1[HW-H]

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Technical Representative

Jua Watshington

Project Location: Barnstable Airport Sample Description: Work Order: 20E0400

Date Received: 5/11/2020
Field Sample #: HW-I (S)

Sampled: 5/8/2020 13:41

Sample ID: 20E0400-01
Sample Matrix: Ground Water

Semivolatile	Ougania	Commonada	L. I	CAME ME

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	21	2.0	0.64	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 14:48	JFC
Perfluorobutanesulfonic acid (PFBS)	14	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 14:48	JFC
Perfluoropentanoic acid (PFPeA)	810	40	8.5	ng/L	20		SOP 434-PFAAS	5/20/20	5/26/20 13:04	JFC
Perfluorohexanoic acid (PFHxA)	510	40	10	ng/L	20		SOP 434-PFAAS	5/20/20	5/26/20 13:04	JFC
Perfluorohexanesulfonic acid (PFHxS)	220	40	15	ng/L	20		SOP 434-PFAAS	5/20/20	5/26/20 13:04	JFC
Perfluoroheptanoic acid (PFHpA)	540	40	11	ng/L	20		SOP 434-PFAAS	5/20/20	5/26/20 13:04	JFC
Perfluoroheptanesulfonic acid (PFHpS)	8.6	2.0	1.0	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 14:48	JFC
Perfluorooctanoic acid (PFOA)	290	40	14	ng/L	20		SOP 434-PFAAS	5/20/20	5/26/20 13:04	JFC
Perfluorooctanesulfonic acid (PFOS)	40	2.0	0.68	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 14:48	JFC
Perfluorooctanesulfonamide (FOSA)	ND	2.0	0.83	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 14:48	JFC
6:2 Fluorotelomersulfonic acid (6:2FTS A)	13000	400	78	ng/L	200		SOP 434-PFAAS	5/20/20	5/27/20 16:17	JFC
Perfluorononanoic acid (PFNA)	82	2.0	0.63	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 14:48	JFC
Perfluorodecanoic acid (PFDA)	ND	2.0	0.62	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 14:48	JFC
Perfluorodecanesulfonic acid (PFDS)	ND	2.0	0.51	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 14:48	JFC
N-EtFOSAA	ND	2.0	0.70	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 14:48	JFC
8:2 Fluorotelomersulfonic acid (8:2FTS A)	2.7	2.0	1.1	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 14:48	JFC
Perfluoroundecanoic acid (PFUnA)	ND	2.0	0.49	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 14:48	JFC
N-MeFOSAA	ND	2.0	0.62	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 14:48	JFC
Perfluorododecanoic acid (PFDoA)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 14:48	JFC
Perfluorotridecanoic acid (PFTrDA)	ND	2.0	0.67	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 14:48	JFC
Perfluorotetradecanoic acid (PFTA)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 14:48	JFC
Perfluorotetradecanoic acid (PFTA)	ND	400	100	ng/L	200		SOP 434-PFAAS	5/20/20	5/27/20 16:17	JFC
Surrogates		% Reco	very	Recovery Limits		Flag/Qual				
13C-PFHxA		86.2		70-130					5/22/20 14:48	
13C-PFHxA			*	70-130		S-21			5/26/20 13:04	

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
13C-PFHxA	86.2	70-130		5/22/20 14:48
13C-PFHxA	*	70-130	S-21	5/26/20 13:04
13C-PFHxA	*	70-130	S-01	5/27/20 16:17
13C-PFDA	96.4	70-130		5/22/20 14:48
13C-PFDA	*	70-130	S-21	5/26/20 13:04
13C-PFDA	*	70-130	S-01	5/27/20 16:17
d5-NEtFOSAA	84.2	70-130		5/22/20 14:48
d5-NEtFOSAA	*	70-130	S-21	5/26/20 13:04
d5-NEtFOSAA	*	70-130	S-01	5/27/20 16:17

Project Location: Barnstable Airport

Sample Description:

Work Order: 20E0400

Date Received: 5/11/2020
Field Sample #: HW-I (M)

Sampled: 5/8/2020 14:25

Sample ID: 20E0400-02
Sample Matrix: Ground Water

			T COME NEC
Semivolatile	Organic	Compounds by .	- LC/MS-MS

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	ND	2.0	0.64	ng/L	1		SOP 434-PFAAS	5/20/20	5/26/20 13:25	JFC
Perfluorobutanesulfonic acid (PFBS)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/26/20 13:25	JFC
Perfluoropentanoic acid (PFPeA)	2.8	2.0	0.42	ng/L	1		SOP 434-PFAAS	5/20/20	5/26/20 13:25	JFC
Perfluorohexanoic acid (PFHxA)	3.4	2.0	0.51	ng/L	1		SOP 434-PFAAS	5/20/20	5/26/20 13:25	JFC
Perfluorohexanesulfonic acid (PFHxS)	9.1	2.0	0.77	ng/L	1		SOP 434-PFAAS	5/20/20	5/26/20 13:25	JFC
Perfluoroheptanoic acid (PFHpA)	1.2	2.0	0.53	ng/L	1		SOP 434-PFAAS	5/20/20	5/26/20 13:25	JFC
Perfluoroheptanesulfonic acid (PFHpS)	ND	2.0	1.0	ng/L	1		SOP 434-PFAAS	5/20/20	5/26/20 13:25	JFC
Perfluorooctanoic acid (PFOA)	1.8	2.0	0.71	ng/L	1		SOP 434-PFAAS	5/20/20	5/26/20 13:25	JFC
Perfluorooctanesulfonic acid (PFOS)	14	2.0	0.68	ng/L	1		SOP 434-PFAAS	5/20/20	5/26/20 13:25	JFC
Perfluorooctanesulfonamide (FOSA)	ND	2.0	0.83	ng/L	1		SOP 434-PFAAS	5/20/20	5/26/20 13:25	JFC
6:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	2.0	0.39	ng/L	1		SOP 434-PFAAS	5/20/20	5/26/20 13:25	JFC
Perfluorononanoic acid (PFNA)	0.78	2.0	0.63	ng/L	1		SOP 434-PFAAS	5/20/20	5/26/20 13:25	JFC
Perfluorodecanoic acid (PFDA)	ND	2.0	0.62	ng/L	1		SOP 434-PFAAS	5/20/20	5/26/20 13:25	JFC
Perfluorodecanesulfonic acid (PFDS)	ND	2.0	0.51	ng/L	1		SOP 434-PFAAS	5/20/20	5/26/20 13:25	JFC
N-EtFOSAA	ND	2.0	0.70	ng/L	1		SOP 434-PFAAS	5/20/20	5/26/20 13:25	JFC
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	2.0	1.1	ng/L	1		SOP 434-PFAAS	5/20/20	5/26/20 13:25	JFC
Perfluoroundecanoic acid (PFUnA)	ND	2.0	0.49	ng/L	1		SOP 434-PFAAS	5/20/20	5/26/20 13:25	JFC
N-MeFOSAA	ND	2.0	0.62	ng/L	1		SOP 434-PFAAS	5/20/20	5/26/20 13:25	JFC
Perfluorododecanoic acid (PFDoA)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/26/20 13:25	JFC
Perfluorotridecanoic acid (PFTrDA)	ND	2.0	0.67	ng/L	1		SOP 434-PFAAS	5/20/20	5/26/20 13:25	JFC
Perfluorotetradecanoic acid (PFTA)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/26/20 13:25	JFC

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
13C-PFHxA	82.5	70-130		5/26/20 13:25
13C-PFDA	71.8	70-130		5/26/20 13:25
d5-NEtFOSAA	86.0	70-130		5/26/20 13:25

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Barnstable Airport Sample Description:

Date Received: 5/11/2020
Field Sample #: HW-I (D)

Sampled: 5/8/2020 15:37

Sample ID: 20E0400-03
Sample Matrix: Ground Water

	D 1	DI	D.	***	D11 4	FI (O 1	25.0	Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	0.75	2.0	0.64	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:31	JFC
Perfluorobutanesulfonic acid (PFBS)	1.1	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:31	JFC
Perfluoropentanoic acid (PFPeA)	22	2.0	0.42	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:31	JFC
Perfluorohexanoic acid (PFHxA)	19	2.0	0.51	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:31	JFC
Perfluorohexanesulfonic acid (PFHxS)	18	2.0	0.77	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:31	JFC
Perfluoroheptanoic acid (PFHpA)	4.6	2.0	0.53	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:31	JFC
Perfluoroheptanesulfonic acid (PFHpS)	ND	2.0	1.0	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:31	JFC
Perfluorooctanoic acid (PFOA)	2.8	2.0	0.71	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:31	JFC
Perfluorooctanesulfonic acid (PFOS)	20	2.0	0.68	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:31	JFC
Perfluorooctanesulfonamide (FOSA)	ND	2.0	0.83	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:31	JFC
6:2 Fluorotelomersulfonic acid (6:2FTS A)	1.6	2.0	0.39	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:31	JFC
Perfluorononanoic acid (PFNA)	ND	2.0	0.63	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:31	JFC
Perfluorodecanoic acid (PFDA)	ND	2.0	0.62	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:31	JFC
Perfluorodecanesulfonic acid (PFDS)	ND	2.0	0.51	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:31	JFC
N-EtFOSAA	ND	2.0	0.70	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:31	JFC
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	2.0	1.1	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:31	JFC
Perfluoroundecanoic acid (PFUnA)	ND	2.0	0.49	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:31	JFC
N-MeFOSAA	ND	2.0	0.62	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:31	JFC
Perfluorododecanoic acid (PFDoA)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:31	JFC
Perfluorotridecanoic acid (PFTrDA)	ND	2.0	0.67	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:31	JFC
Perfluorotetradecanoic acid (PFTA)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:31	JFC

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
13C-PFHxA	76.5	70-130		5/22/20 15:31
13C-PFDA	76.5	70-130		5/22/20 15:31
d5-NEtFOSAA	78.3	70-130		5/22/20 15:31

Project Location: Barnstable Airport Sample Description: Work Order: 20E0400

Date Received: 5/11/2020
Field Sample #: HW-H

Sampled: 5/8/2020 16:25

Sample ID: 20E0400-04
Sample Matrix: Ground Water

Semivolatile Organic Compounds by -	LC/MS-MS
-------------------------------------	----------

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	21	2.0	0.64	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:53	JFC
Perfluorobutanesulfonic acid (PFBS)	0.56	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:53	JFC
Perfluoropentanoic acid (PFPeA)	470	20	4.2	ng/L	10		SOP 434-PFAAS	5/20/20	5/26/20 14:08	JFC
Perfluorohexanoic acid (PFHxA)	360	20	5.1	ng/L	10		SOP 434-PFAAS	5/20/20	5/26/20 14:08	JFC
Perfluorohexanesulfonic acid (PFHxS)	3.1	2.0	0.77	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:53	JFC
Perfluoroheptanoic acid (PFHpA)	280	20	5.3	ng/L	10		SOP 434-PFAAS	5/20/20	5/26/20 14:08	JFC
Perfluoroheptanesulfonic acid (PFHpS)	ND	2.0	1.0	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:53	JFC
Perfluorooctanoic acid (PFOA)	2.0	2.0	0.71	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:53	JFC
Perfluorooctanesulfonic acid (PFOS)	ND	2.0	0.68	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:53	JFC
Perfluorooctanesulfonamide (FOSA)	ND	2.0	0.83	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:53	JFC
6:2 Fluorotelomersulfonic acid (6:2FTS A)	130	20	3.9	ng/L	10		SOP 434-PFAAS	5/20/20	5/26/20 14:08	JFC
Perfluorononanoic acid (PFNA)	ND	2.0	0.63	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:53	JFC
Perfluorodecanoic acid (PFDA)	ND	2.0	0.62	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:53	JFC
Perfluorodecanesulfonic acid (PFDS)	ND	2.0	0.51	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:53	JFC
N-EtFOSAA	ND	2.0	0.70	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:53	JFC
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	2.0	1.1	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:53	JFC
Perfluoroundecanoic acid (PFUnA)	ND	2.0	0.49	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:53	JFC
N-MeFOSAA	ND	2.0	0.62	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:53	JFC
Perfluorododecanoic acid (PFDoA)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:53	JFC
Perfluorotridecanoic acid (PFTrDA)	ND	2.0	0.67	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:53	JFC
Perfluorotetradecanoic acid (PFTA)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 15:53	JFC

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
13C-PFHxA	69.6 *	70-130	PF-01	5/22/20 15:53
13C-PFHxA	*	70-130	S-21	5/26/20 14:08
13C-PFDA	75.5	70-130		5/22/20 15:53
13C-PFDA	*	70-130	S-21	5/26/20 14:08
d5-NEtFOSAA	80.8	70-130		5/22/20 15:53
d5-NEtFOSAA	*	70-130	S-21	5/26/20 14:08

Project Location: Barnstable Airport

Sample Description:

Work Order: 20E0400

Date Received: 5/11/2020
Field Sample #: OW-9 (S)

Sampled: 5/8/2020 10:20

Sample ID: 20E0400-05
Sample Matrix: Ground Water

Semivolatile Organic Compounds by -	LC/MS-MS
-------------------------------------	----------

	B 1	D.	D.	***	D11 4	FI (O 1	25.0	Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	0.78	2.0	0.64	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:14	JFC
Perfluorobutanesulfonic acid (PFBS)	1.2	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:14	JFC
Perfluoropentanoic acid (PFPeA)	19	2.0	0.42	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:14	JFC
Perfluorohexanoic acid (PFHxA)	15	2.0	0.51	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:14	JFC
Perfluorohexanesulfonic acid (PFHxS)	11	2.0	0.77	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:14	JFC
Perfluoroheptanoic acid (PFHpA)	6.4	2.0	0.53	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:14	JFC
Perfluoroheptanesulfonic acid (PFHpS)	ND	2.0	1.0	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:14	JFC
Perfluorooctanoic acid (PFOA)	4.3	2.0	0.71	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:14	JFC
Perfluorooctanesulfonic acid (PFOS)	5.8	2.0	0.68	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:14	JFC
Perfluorooctanesulfonamide (FOSA)	ND	2.0	0.83	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:14	JFC
6:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	2.0	0.39	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:14	JFC
Perfluorononanoic acid (PFNA)	3.3	2.0	0.63	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:14	JFC
Perfluorodecanoic acid (PFDA)	ND	2.0	0.62	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:14	JFC
Perfluorodecanesulfonic acid (PFDS)	ND	2.0	0.51	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:14	JFC
N-EtFOSAA	ND	2.0	0.70	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:14	JFC
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	2.0	1.1	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:14	JFC
Perfluoroundecanoic acid (PFUnA)	ND	2.0	0.49	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:14	JFC
N-MeFOSAA	ND	2.0	0.62	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:14	JFC
Perfluorododecanoic acid (PFDoA)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:14	JFC
Perfluorotridecanoic acid (PFTrDA)	ND	2.0	0.67	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:14	JFC
Perfluorotetradecanoic acid (PFTA)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:14	JFC

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
13C-PFHxA	150 *	70-130	PF-01	5/22/20 16:14
13C-PFDA	101	70-130		5/22/20 16:14
d5-NEtFOSAA	121	70-130		5/22/20 16:14

Project Location: Barnstable Airport Sample D

Sample Description:

Work Order: 20E0400

Date Received: 5/11/2020
Field Sample #: OW-9 (M)

Sampled: 5/8/2020 12:02

Sample ID: 20E0400-06
Sample Matrix: Ground Water

			T COME NEC
Semivolatile	Organic	Compounds by .	- LC/MS-MS

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	1.1	2.0	0.64	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:36	JFC
Perfluorobutanesulfonic acid (PFBS)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:36	JFC
Perfluoropentanoic acid (PFPeA)	31	2.0	0.42	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:36	JFC
Perfluorohexanoic acid (PFHxA)	18	2.0	0.51	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:36	JFC
Perfluorohexanesulfonic acid (PFHxS)	3.3	2.0	0.77	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:36	JFC
Perfluoroheptanoic acid (PFHpA)	6.1	2.0	0.53	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:36	JFC
Perfluoroheptanesulfonic acid (PFHpS)	ND	2.0	1.0	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:36	JFC
Perfluorooctanoic acid (PFOA)	3.5	2.0	0.71	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:36	JFC
Perfluorooctanesulfonic acid (PFOS)	10	2.0	0.68	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:36	JFC
Perfluorooctanesulfonamide (FOSA)	ND	2.0	0.83	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:36	JFC
6:2 Fluorotelomersulfonic acid (6:2FTS A)	4.9	2.0	0.39	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:36	JFC
Perfluorononanoic acid (PFNA)	3.7	2.0	0.63	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:36	JFC
Perfluorodecanoic acid (PFDA)	ND	2.0	0.62	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:36	JFC
Perfluorodecanesulfonic acid (PFDS)	ND	2.0	0.51	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:36	JFC
N-EtFOSAA	ND	2.0	0.70	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:36	JFC
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	2.0	1.1	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:36	JFC
Perfluoroundecanoic acid (PFUnA)	ND	2.0	0.49	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:36	JFC
N-MeFOSAA	ND	2.0	0.62	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:36	JFC
Perfluorododecanoic acid (PFDoA)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:36	JFC
Perfluorotridecanoic acid (PFTrDA)	ND	2.0	0.67	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:36	JFC
Perfluorotetradecanoic acid (PFTA)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:36	JFC

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
13C-PFHxA	81.6	70-130		5/22/20 16:36
13C-PFDA	78.4	70-130		5/22/20 16:36
d5-NEtFOSAA	86.1	70-130		5/22/20 16:36

Project Location: Barnstable Airport

Sample Description:

Work Order: 20E0400

Date Received: 5/11/2020
Field Sample #: OW-18 (S)

Sampled: 5/8/2020 14:25

Sample ID: 20E0400-07
Sample Matrix: Ground Water

Semivolatile	Organic	Compounds by	- LC/MS-MS
--------------	---------	--------------	------------

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	ND	2.0	0.64	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:57	JFC
Perfluorobutanesulfonic acid (PFBS)	0.63	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:57	JFC
Perfluoropentanoic acid (PFPeA)	9.2	2.0	0.42	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:57	JFC
Perfluorohexanoic acid (PFHxA)	8.1	2.0	0.51	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:57	JFC
Perfluorohexanesulfonic acid (PFHxS)	8.5	2.0	0.77	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:57	JFC
Perfluoroheptanoic acid (PFHpA)	3.9	2.0	0.53	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:57	JFC
Perfluoroheptanesulfonic acid (PFHpS)	ND	2.0	1.0	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:57	JFC
Perfluorooctanoic acid (PFOA)	10	2.0	0.71	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:57	JFC
Perfluorooctanesulfonic acid (PFOS)	16	2.0	0.68	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:57	JFC
Perfluorooctanesulfonamide (FOSA)	ND	2.0	0.83	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:57	JFC
6:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	2.0	0.39	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:57	JFC
Perfluorononanoic acid (PFNA)	3.2	2.0	0.63	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:57	JFC
Perfluorodecanoic acid (PFDA)	ND	2.0	0.62	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:57	JFC
Perfluorodecanesulfonic acid (PFDS)	ND	2.0	0.51	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:57	JFC
N-EtFOSAA	ND	2.0	0.70	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:57	JFC
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	2.0	1.1	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:57	JFC
Perfluoroundecanoic acid (PFUnA)	ND	2.0	0.49	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:57	JFC
N-MeFOSAA	ND	2.0	0.62	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:57	JFC
Perfluorododecanoic acid (PFDoA)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:57	JFC
Perfluorotridecanoic acid (PFTrDA)	ND	2.0	0.67	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:57	JFC
Perfluorotetradecanoic acid (PFTA)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 16:57	JFC

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
13C-PFHxA	78.4	70-130		5/22/20 16:57
13C-PFDA	70.0	70-130		5/22/20 16:57
d5-NEtFOSAA	75.8	70-130		5/22/20 16:57

Analyte

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Barnstable Airport

Sample Description:

ND

ND

ND

ND

ND

ND

ND

2.0

2.0

2.0

2.0

2.0

2.0

2.0

0.51

0.70

1.1

0.49

0.62

0.50

0.67

ng/L

ng/L

ng/L

ng/L

ng/L

ng/L

ng/L

Work Order: 20E0400

Date Received: 5/11/2020 Field Sample #: OW-18 (M)

Sampled: 5/8/2020 16:16

Sample ID: 20E0400-08 Sample Matrix: Ground Water

Perfluorobutanoic acid (PFBA) Perfluorobutanesulfonic acid (PFBS) Perfluoropentanoic acid (PFPeA) Perfluorohexanoic acid (PFHxA) Perfluorohexanesulfonic acid (PFHxS) Perfluoroheptanoic acid (PFHpA) Perfluoroheptanesulfonic acid (PFHpS) Perfluorooctanoic acid (PFOA) Perfluorooctanesulfonic acid (PFOS) Perfluorooctanesulfonamide (FOSA) 6:2 Fluorotelomersulfonic acid (6:2FTS A)

Perfluorononanoic acid (PFNA) Perfluorodecanoic acid (PFDA) Perfluorodecanesulfonic acid (PFDS)

8:2 Fluorotelomersulfonic acid (8:2FTS A)

Perfluoroundecanoic acid (PFUnA)

Perfluorododecanoic acid (PFDoA)

Perfluorotridecanoic acid (PFTrDA)

N-EtFOSAA

N-MeFOSAA

	\$	Semivolatile	Organic Cor	npounds by - I	LC/MS-MS				
Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
2.3	2.0	0.64	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:19	JFC
3.4	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:19	JFC
110	2.0	0.42	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:19	JFC
47	2.0	0.51	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:19	JFC
70	2.0	0.77	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:19	JFC
7.4	2.0	0.53	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:19	JFC
3.3	2.0	1.0	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:19	JFC
9.6	2.0	0.71	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:19	JFC
180	2.0	0.68	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:19	JFC
ND	2.0	0.83	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:19	JFC
ND	2.0	0.39	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:19	JFC
2.7	2.0	0.63	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:19	JFC
ND	2.0	0.62	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:19	JFC

SOP 434-PFAAS

5/20/20

5/20/20

5/20/20

5/20/20

5/20/20

5/20/20

5/20/20

JFC

JFC

JFC

JFC

JFC

JFC

JFC

5/22/20 17:19

5/22/20 17:19

5/22/20 17:19

5/22/20 17:19

5/22/20 17:19

5/22/20 17:19

5/22/20 17:19

Perfluorotetradecanoic acid (PFTA)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:19	JFC
Surrogates		% Reco	very	Recovery Limits		Flag/Qual				
13C-PFHxA		82.2		70-130					5/22/20 17:19	
13C-PFDA		82.0		70-130					5/22/20 17:19	
d5-NEtFOSAA		90.7		70-130					5/22/20 17:19	

1

1

Sample Extraction Data

Prep Method: SOP 434-PFAAS Analytical Method: SOP 434-PFAAS

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
20E0400-01 [HW-I (S)]	B258207	250	1.00	05/20/20	
20E0400-01RE1 [HW-I (S)]	B258207	250	1.00	05/20/20	
20E0400-01RE2 [HW-I (S)]	B258207	250	1.00	05/20/20	
20E0400-02 [HW-I (M)]	B258207	250	1.00	05/20/20	
20E0400-03 [HW-I (D)]	B258207	250	1.00	05/20/20	
20E0400-04 [HW-H]	B258207	250	1.00	05/20/20	
20E0400-04RE1 [HW-H]	B258207	250	1.00	05/20/20	
20E0400-05 [OW-9 (S)]	B258207	250	1.00	05/20/20	
20E0400-06 [OW-9 (M)]	B258207	250	1.00	05/20/20	
20E0400-07 [OW-18 (S)]	B258207	250	1.00	05/20/20	
20E0400-08 [OW-18 (M)]	B258207	250	1.00	05/20/20	

QUALITY CONTROL

Semivolatile Organic Compounds by - LC/MS-MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
atch B258207 - SOP 434-PFAAS										
Blank (B258207-BLK1)				Prepared: 05	5/20/20 Analy	yzed: 05/22/	20			
erfluorobutanoic acid (PFBA)	ND	2.0	ng/L							
erfluorobutanesulfonic acid (PFBS)	ND	2.0	ng/L							
erfluoropentanoic acid (PFPeA)	ND	2.0	ng/L							
erfluorohexanoic acid (PFHxA)	ND	2.0	ng/L							
erfluorohexanesulfonic acid (PFHxS)	ND	2.0	ng/L							
erfluoroheptanoic acid (PFHpA)	ND	2.0	ng/L							
erfluoroheptanesulfonic acid (PFHpS)	ND	2.0	ng/L							
erfluorooctanoic acid (PFOA)	ND	2.0	ng/L							
erfluorooctanesulfonic acid (PFOS)	ND	2.0	ng/L							
erfluorooctanesulfonamide (FOSA)	ND	2.0	ng/L							
2 Fluorotelomersulfonic acid (6:2FTS A)	ND	2.0	ng/L							
erfluorononanoic acid (PFNA)	ND	2.0	ng/L							
erfluorodecanoic acid (PFDA)	ND	2.0	ng/L							
erfluorodecanesulfonic acid (PFDS)	ND	2.0	ng/L							
-EtFOSAA	ND	2.0	ng/L							
2 Fluorotelomersulfonic acid (8:2FTS A)	ND	2.0	ng/L							
erfluoroundecanoic acid (PFUnA)	ND	2.0	ng/L							
-MeFOSAA	ND	2.0	ng/L							
erfluorododecanoic acid (PFDoA)	ND	2.0	ng/L							
erfluorotridecanoic acid (PFTrDA)	ND	2.0	ng/L							
erfluorotetradecanoic acid (PFTA)	ND	2.0	ng/L							
urrogate: 13C-PFHxA	32.3		ng/L	40.0		80.6	70-130			
urrogate: 13C-PFDA	31.2		ng/L	40.0		78.0	70-130			
urrogate: d5-NEtFOSAA	139		ng/L	160		87.0	70-130			
CS (B258207-BS1)				Prepared: 05	5/20/20 Analy	yzed: 05/22/	20			
erfluorobutanoic acid (PFBA)	1.76	2.0	ng/L	2.00		88.2	70-130			
erfluorobutanesulfonic acid (PFBS)	1.65	2.0	ng/L	1.77		93.3	70-130			
erfluoropentanoic acid (PFPeA)	1.88	2.0	ng/L	2.00		93.8	70-130			
erfluorohexanoic acid (PFHxA)	2.02	2.0	ng/L	2.00		101	70-130			
erfluorohexanesulfonic acid (PFHxS)	1.59	2.0	ng/L	1.82		87.6	70-130			
erfluoroheptanoic acid (PFHpA)	1.86	2.0	ng/L	2.00		92.9	70-130			
erfluoroheptanesulfonic acid (PFHpS)	1.52	2.0	ng/L	1.90		80.2	70-130			
erfluorooctanoic acid (PFOA)	1.97	2.0	ng/L	2.00		98.7	70-130			
erfluorooctanesulfonic acid (PFOS)	1.98	2.0	ng/L	1.85		107	70-130			
erfluorooctanesulfonamide (FOSA)	1.73	2.0	ng/L	2.00		86.5	70-130			
2 Fluorotelomersulfonic acid (6:2FTS A)	2.35	2.0	ng/L	2.00		117	70-130			
erfluorononanoic acid (PFNA)	2.04	2.0	ng/L	2.00		102	70-130			
erfluorodecanoic acid (PFDA)	2.09	2.0	ng/L	2.00		104	70-130			
erfluorodecanesulfonic acid (PFDS)	1.90	2.0	ng/L	1.93		98.4	70-130			
-EtFOSAA	2.10	2.0	ng/L	2.00		105	70-130			
2 Fluorotelomersulfonic acid (8:2FTS A)	2.12	2.0	ng/L	1.92		110	70-130			
erfluoroundecanoic acid (PFUnA)	2.20	2.0	ng/L	2.00		110	70-130			
-MeFOSAA	1.91	2.0	ng/L	2.00		95.5	70-130			
erfluorododecanoic acid (PFDoA)	2.30	2.0	ng/L	2.00		115	70-130			
erfluorotridecanoic acid (PFTrDA)	2.59	2.0	ng/L	2.00		129	70-130			
erfluorotetradecanoic acid (PFTA)	3.20	2.0	ng/L	2.00		160 *	70-130			L-01
urrogate: 13C-PFHxA	35.9		ng/L	40.0		89.7	70-130			
urrogate: 13C-PFDA	38.4		ng/L	40.0		96.0	70-130			

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
L-01	Laboratory fortified blank /laboratory control sample recovery outside of control limits. Data validation is not affected since all results are "not detected" for all samples in this batch for this compound and bias is on the high side.
PF-01	Surrogate recovery is outside of control limits. Sample not re-extracted past holding time per method.
S-01	The surrogate recovery for this sample is not available due to sample dilution below the surrogate reporting limit required from high analyte concentration and/or matrix interferences.
S-21	Surrogate was diluted below its calibration range due to elevated levels of target analytes.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	
SOP 434-PFAAS in Water		
Perfluorobutanoic acid (PFBA)	NH-P	
Perfluorobutanesulfonic acid (PFBS)	NH-P	
Perfluoropentanoic acid (PFPeA)	NH-P	
Perfluorohexanoic acid (PFHxA)	NH-P	
Perfluorohexanesulfonic acid (PFHxS)	NH-P	
Perfluoroheptanoic acid (PFHpA)	NH-P	
Perfluorooctanoic acid (PFOA)	NH-P	
Perfluorooctanesulfonic acid (PFOS)	NH-P	
6:2 Fluorotelomersulfonic acid (6:2FTS A)	NH-P	
Perfluorononanoic acid (PFNA)	NH-P	
Perfluorodecanoic acid (PFDA)	NH-P	
N-EtFOSAA	NH-P	
8:2 Fluorotelomersulfonic acid (8:2FTS A)	NH-P	
Perfluoroundecanoic acid (PFUnA)	NH-P	
N-MeFOSAA	NH-P	
Perfluorododecanoic acid (PFDoA)	NH-P	
Perfluorotridecanoic acid (PFTrDA)	NH-P	
Perfluorotetradecanoic acid (PFTA)	NH-P	

 $The \ CON-TEST \ Environmental \ Laboratory \ operates \ under \ the \ following \ certifications \ and \ accreditations:$

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2017	100033	03/1/2022
MA	Massachusetts DEP	M-MA100	06/30/2020
CT	Connecticut Department of Publilc Health	PH-0567	09/30/2021
NY	New York State Department of Health	10899 NELAP	04/1/2021
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2021
RI	Rhode Island Department of Health	LAO00112	12/30/2020
NC	North Carolina Div. of Water Quality	652	12/31/2020
NJ	New Jersey DEP	MA007 NELAP	06/30/2020
FL	Florida Department of Health	E871027 NELAP	06/30/2020
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2021
ME	State of Maine	2011028	06/9/2021
VA	Commonwealth of Virginia	460217	12/14/2020
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2020
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2020
NC-DW	North Carolina Department of Health	25703	07/31/2020
PA	Commonwealth of Pennsylvania DEP	68-05812	06/30/2020

ZOFOHOD

Glassware in freezer? Y / N Prepackaged Cooler? Y / N nissing samples from prepacked *Contest is not responsible for Glassware in the fridge? Disclaimer: Con-Test Labs is not responsible for any omitted information on the Chain of Custody. The Chain of Custody is a legal document that must be complete and accurate and is used to determine wha analyses the laboratory will perform. Any missing information is not the laboratory's responsibility. Coi Fest values your partnership on each project and will try to assist with missing information, but will not I Preservation Codes:1 = IcedH = HCL N = Nitric Acid S = Sulfuric Acid B = Sodium Bisulfate X = Sodium Hydroxide T = Sodium | Matrix Codes:
| GW = Ground Water
| WW = Waste Water
| DW = Drinking Water
| A = Air
| S = Soit
| S Siudge
| SOL = Solid
| SOL = Solid
| O = Other (please
| define| Total Number Of: O = Other (please define) Von Soxhlet Page Lof Soxhlet PCB ONL) coolers ² Preservation Code BACTERIA M = Methanol GLASS_ PLASTIC ENCORE VIALS Thiosulfate possible sample concentration within the Conc H · High; M · Medium; L · Low; C · Clean; U · Please use the following codes to indicate NELAC and AIHA-LAP, LLC Accredited Chromatogram AIHA-LAP, LLC Code column above: ANALYSIS REQUESTED held accountable. Doc # 381 Rev 2_06262019 MCP Certification Form Required MA MCP Required WRTA CT RCP Require MA State DW Required 2479 ۶ X X 39 Spruce Street East Longmeadow, MA 01028 ENCORE X BACTERIA Field Filtered Field Filtered Lab to Filter Lab to Filter PLASTIC School MWRA MBTA juraneze horskywithn.com GLASS CHAIN OF CUSTODY RECORD VIALS Х 0 0 0 0 Conc Code 又 http://www.contestlabs.com ద Municipality Brownfield Due Date: *Matrix Code 35 10-Day 3-Day 4-Day COMP/GRAB CARAD CLP Like Data Pkg Required X PFAS 10-Day (std)][1 5/8/20 5/8/20 Ending Date/Time 51815 51815 51815 51815 Government Email To: ax To #; Federal ormat: Other: -Day 2-Day -Day Client Comments: Çţ Project Entity 5/2/20 27/20 Beginning Date/Time 21816 HORSLEY MITTEN GROUP BARNSTABLE AIRPORT 1 30 p 177 Email: info@contestlabs.com 1940 0/10/ Client Sample ID / Description ٤ M/81-M0 5/11/2026 Phone: 413-525-2332 9) 81- MO ne.11-Date/Time: MINITED HICE DH NAH S Date/Time: Fax: 413-525-6405 Date/Time: ate/Time: Date/Time: Date/Time: Date/Time: J invoice Recipient: DRYAN MASSA MCC ARTH! D(N ~ HW-130 833-4600 ーヌエ 4 Y Con-Test Quote Name/Number H ٥ 70 CON-LEST elinquished by: (signature) <u>ス</u>エ Received by: (signature) 200 Work Order# Con-Test Project Location: Project Manager: Project Number: % :/q pb ĝ mments: Sampled By: Address: Phone: Page 17 of 18

Table of Contents

I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples_____

Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False

Received By	orsles		Date	5/11/2	<u> </u>	Time	1940	
How were the sam	nples In Cooler	7	- No Cooler		On Ice	T	No Ice	
received?	Direct from Samp		, 140 00010.	**************************************	. Ambient		Melted Ice	
	Direct nom Samp	. •				19	Merce 100	
Were samples wi		By Gun#			Actual Tem			
Temperature? 2-		By Blank #			Actual Tem			
	ody Seal Intact?	nla	••	•	s Tampered	-	<u> </u>	
	Relinquished?		_	s Chain Agr	ree With Sar	mples?		
	ken/leaking/loose caps	on any sam	-	<u> </u>		_		
Is COC in ink/ Leg		_		aples receiv		olding time?		
Did COC include		1	Analysis	<u> </u>		er Name		•
pertinent Informat			_ ID's _		Collection	Dates/Times		
-	s filled out and legible?	<u> </u>	*					
Are there Lab to Fi		<u>F</u>	-		s notified?			
Are there Rushes?		F	-		s notified?			•
Are there Short Ho			-	Who was	s notified?	***************************************		
ls there enough Vo			-					
1 - 5 - 5 - 10 - 10 - 10 - 10 - 10 - 10	e where applicable?	<u> </u>	-	MS/MSD?_		• W.Z	b	
Proper Media/Cont			•		samples req	uired?		•
Were trip blanks re		F	_	On COC?_	F		ſ	
Do all samples hav	re the proper pH?		Acid	nk		Base	$n^{1}a$	
Vials #	Containers:	#			#			#
Unp-	1 Liter Amb.		1 Liter F			16 oz	·····	<u> </u>
HCL-	500 mL Amb.	<u> </u>	500 mL		<u> </u>	8oz Am		<u> </u>
Meoh-	250 mL Amb.		250 mL		10	4oz Am		
Bisulfate-	Flashpoint	<u> </u>	Col./Ba		 	2oz Am	· · · · · · · · · · · · · · · · · · ·	<u> </u>
DI-	Other Glass	<u> </u>	Other F		<u> </u>	Enc	ore	
Thiosulfate-	SOC Kit		Plastic		<u> </u>	Frozen:		
Sulfuric-	Perchlorate		Ziplo					
			Unused N	<i>l</i> edia				
Vials #		#	4 1 111 -		#	46.55	A 1	#
Unp-	1 Liter Amb.	<u> </u>	1 Liter F		i	16 oz		
HCL-	500 mL Amb.		500 mL		<u> </u>	8oz Am		
Meoh-	250 mL Amb.		250 mL			4oz Am		
Bisulfate-	Col./Bacteria	 '	Flash		 	2oz Am		<u> </u>
DI- Thiosulfate-	Other Plastic SOC Kit	<u> </u>	Other (Frozen:	ore i	<u> </u>
Sulfuric-	Perchlorate		Plastic		(Prozen.		
Comments:	Fercinorate		Ziplo	JCK I		<u> </u>	***	<u></u>
Comments.								

June 2, 2020

Bryan Massa Horsley Witten Group 90 Route 6A Unit #1 Sandwich, MA 02563

Project Location: Barnstable Airport

Client Job Number: Project Number: 19128

Laboratory Work Order Number: 20E0596

M M Contry

Enclosed are results of analyses for samples received by the laboratory on May 14, 2020. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Raymond J. McCarthy Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	7
20E0596-01	7
20E0596-02	8
20E0596-03	9
20E0596-04	10
20E0596-05	11
20E0596-06	13
20E0596-07	15
20E0596-08	18
Sample Preparation Information	21
QC Data	22
1,4-Dioxane by isotope dilution GC/MS	22
B258084	22
Semivolatile Organic Compounds by - LC/MS-MS	23
B258207	23
B258609	24
B258727	26
Flag/Qualifier Summary	28
Certifications	29
Chain of Custody/Sample Receipt	31

Horsley Witten Group 90 Route 6A Unit #1 Sandwich, MA 02563 ATTN: Bryan Massa

PURCHASE ORDER NUMBER:

REPORT DATE: 6/2/2020

PROJECT NUMBER: 19128

ANALYTICAL SUMMARY

WORK ORDER NUMBER:

20E0596

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Barnstable Airport

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
HW-D (M)	20E0596-01	Ground Water		SOP 434-PFAAS	
HW-D (d)	20E0596-02	Ground Water		SOP 434-PFAAS	
HW-D (dd)	20E0596-03	Ground Water		SOP 434-PFAAS	
HW-L	20E0596-04	Ground Water		SW-846 8270D-E	
OW-18D	20E0596-05	Ground Water		SOP 434-PFAAS	
				SW-846 8270D-E	
OW-19D	20E0596-06	Ground Water		SOP 434-PFAAS	
				SW-846 8270D-E	
A14	20E0596-07	Soil		SM 2540G	
				SOP-466 PFAS	
A15	20E0596-08	Soil		SM 2540G	
				SOP-466 PFAS	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

SOP 434-PFAAS

Qualifications:

L-01

Laboratory fortified blank /laboratory control sample recovery outside of control limits. Data validation is not affected since all results are "not detected" for all samples in this batch for this compound and bias is on the high side. Analyte & Samples(s) Qualified:

Perfluorotetradecanoic acid (PFTA

B258207-BS1

S-01

The surrogate recovery for this sample is not available due to sample dilution below the surrogate reporting limit required from high analyte concentration and/or matrix interferences.

Analyte & Samples(s) Qualified:

13C-PFDA

20E0596-06RE1[OW-19D]

13C-PFHxA

20E0596-06RE1[OW-19D]

d5-NEtFOSAA

20E0596-06RE1[OW-19D]

SOP-466 PFAS

Qualifications:

L-05

Laboratory fortified blank/laboratory control sample recovery is outside of control limits. Reported value for this compound is likely to be

biased on the high side.

Analyte & Samples(s) Qualified:

8:2 Fluorotelomersulfonic acid (8:2

B258609-BS1

PF-05

Opening calibration verification was within control criteria. Closing calibration verification was outside of criteria and biased on the low side. Re-analysis yielded similar non-conformance. Analyte & Samples(s) Qualified:

4:2 Fluorotelomersulfonic acid (4:2

S048924-CCV3

6:2 Fluorotelomersulfonic acid (6:2

S048924-CCV3

8:2 Fluorotelomersulfonic acid (8:2

S048924-CCV3

PF-06

Opening calibration verification was within control criteria. Closing calibration verification was outside of criteria and biased on the high side. Re-analysis yielded similar non-conformance.

Analyte & Samples(s) Qualified:

M2-4:2FTS

S048924-CCV3

S-19

Surrogate recovery is outside of control limits, matrix interference suspected. Reanalysis yielded similar surrogate non-conformance.

Analyte & Samples(s) Qualified:

M2PFTA

20E0596-07RE1[A14]

M4PFHpA

20E0596-07RE1[A14]

M5PFPeA

20E0596-07RE1[A14]

V-06

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side for this compound.

Analyte & Samples(s) Qualified:

8:2 Fluorotelomersulfonic acid (8:2

S048924-CCV1

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington
Technical Representative

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Barnstable Airport Sample Description:

Date Received: 5/14/2020

Field Sample #: HW-D (M)

Sampled: 5/13/2020 10:59

Sample ID: 20E0596-01
Sample Matrix: Ground Water

A 1.	D 1/	DI	DI	WT *4	D21 41	FI /O I	M. d. J	Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	ND	2.0	0.64	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:40	JFC
Perfluorobutanesulfonic acid (PFBS)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:40	JFC
Perfluoropentanoic acid (PFPeA)	ND	2.0	0.42	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:40	JFC
Perfluorohexanoic acid (PFHxA)	ND	2.0	0.51	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:40	JFC
Perfluorohexanesulfonic acid (PFHxS)	ND	2.0	0.77	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:40	JFC
Perfluoroheptanoic acid (PFHpA)	ND	2.0	0.53	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:40	JFC
Perfluoroheptanesulfonic acid (PFHpS)	ND	2.0	1.0	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:40	JFC
Perfluorooctanoic acid (PFOA)	ND	2.0	0.71	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:40	JFC
Perfluorooctanesulfonic acid (PFOS)	1.1	2.0	0.68	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:40	JFC
Perfluorooctanesulfonamide (FOSA)	ND	2.0	0.83	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:40	JFC
6:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	2.0	0.39	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:40	JFC
Perfluorononanoic acid (PFNA)	ND	2.0	0.63	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:40	JFC
Perfluorodecanoic acid (PFDA)	ND	2.0	0.62	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:40	JFC
Perfluorodecanesulfonic acid (PFDS)	ND	2.0	0.51	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:40	JFC
N-EtFOSAA	ND	2.0	0.70	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:40	JFC
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	2.0	1.1	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:40	JFC
Perfluoroundecanoic acid (PFUnA)	ND	2.0	0.49	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:40	JFC
N-MeFOSAA	ND	2.0	0.62	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:40	JFC
Perfluorododecanoic acid (PFDoA)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:40	JFC
Perfluorotridecanoic acid (PFTrDA)	ND	2.0	0.67	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:40	JFC
Perfluorotetradecanoic acid (PFTA)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 17:40	JFC

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
13C-PFHxA	76.0	70-130		5/22/20 17:40
13C-PFDA	74.0	70-130		5/22/20 17:40
d5-NEtFOSAA	82.3	70-130		5/22/20 17:40

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Barnstable Airport Sample Description:

Date Received: 5/14/2020
Field Sample #: HW-D (d)

Sampled: 5/13/2020 11:56

Sample ID: 20E0596-02
Sample Matrix: Ground Water

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	0.93	2.0	0.64	ng/L	1		SOP 434-PFAAS	5/27/20	5/31/20 2:13	JFC
Perfluorobutanesulfonic acid (PFBS)	5.5	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/27/20	5/31/20 2:13	JFC
Perfluoropentanoic acid (PFPeA)	17	2.0	0.42	ng/L	1		SOP 434-PFAAS	5/27/20	5/31/20 2:13	JFC
Perfluorohexanoic acid (PFHxA)	22	2.0	0.51	ng/L	1		SOP 434-PFAAS	5/27/20	5/31/20 2:13	JFC
Perfluorohexanesulfonic acid (PFHxS)	39	2.0	0.77	ng/L	1		SOP 434-PFAAS	5/27/20	5/31/20 2:13	JFC
Perfluoroheptanoic acid (PFHpA)	17	2.0	0.53	ng/L	1		SOP 434-PFAAS	5/27/20	5/31/20 2:13	JFC
Perfluoroheptanesulfonic acid (PFHpS)	1.9	2.0	1.0	ng/L	1		SOP 434-PFAAS	5/27/20	5/31/20 2:13	JFC
Perfluorooctanoic acid (PFOA)	7.6	2.0	0.71	ng/L	1		SOP 434-PFAAS	5/27/20	5/31/20 2:13	JFC
Perfluorooctanesulfonic acid (PFOS)	120	2.0	0.68	ng/L	1		SOP 434-PFAAS	5/27/20	5/31/20 2:13	JFC
Perfluorooctanesulfonamide (FOSA)	ND	2.0	0.83	ng/L	1		SOP 434-PFAAS	5/27/20	5/31/20 2:13	JFC
6:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	2.0	0.39	ng/L	1		SOP 434-PFAAS	5/27/20	5/31/20 2:13	JFC
Perfluorononanoic acid (PFNA)	19	2.0	0.63	ng/L	1		SOP 434-PFAAS	5/27/20	5/31/20 2:13	JFC
Perfluorodecanoic acid (PFDA)	ND	2.0	0.62	ng/L	1		SOP 434-PFAAS	5/27/20	5/31/20 2:13	JFC
Perfluorodecanesulfonic acid (PFDS)	ND	2.0	0.51	ng/L	1		SOP 434-PFAAS	5/27/20	5/31/20 2:13	JFC
N-EtFOSAA	ND	2.0	0.70	ng/L	1		SOP 434-PFAAS	5/27/20	5/31/20 2:13	JFC
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	2.0	1.1	ng/L	1		SOP 434-PFAAS	5/27/20	5/31/20 2:13	JFC
Perfluoroundecanoic acid (PFUnA)	ND	2.0	0.49	ng/L	1		SOP 434-PFAAS	5/27/20	5/31/20 2:13	JFC
N-MeFOSAA	ND	2.0	0.62	ng/L	1		SOP 434-PFAAS	5/27/20	5/31/20 2:13	JFC
Perfluorododecanoic acid (PFDoA)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/27/20	5/31/20 2:13	JFC
Perfluorotridecanoic acid (PFTrDA)	ND	2.0	0.67	ng/L	1		SOP 434-PFAAS	5/27/20	5/31/20 2:13	JFC
Perfluorotetradecanoic acid (PFTA)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/27/20	5/31/20 2:13	JFC

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
13C-PFHxA	98.4	70-130		5/31/20 2:13
13C-PFDA	94.3	70-130		5/31/20 2:13
d5-NEtFOSAA	107	70-130		5/31/20 2:13

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Barnstable Airport Sample Description:

Date Received: 5/14/2020
Field Sample #: HW-D (dd)

Sampled: 5/13/2020 14:18

Sample ID: 20E0596-03
Sample Matrix: Ground Water

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	ND	2.0	0.64	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 18:45	JFC
Perfluorobutanesulfonic acid (PFBS)	0.54	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 18:45	JFC
Perfluoropentanoic acid (PFPeA)	ND	2.0	0.42	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 18:45	JFC
Perfluorohexanoic acid (PFHxA)	ND	2.0	0.51	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 18:45	JFC
Perfluorohexanesulfonic acid (PFHxS)	8.0	2.0	0.77	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 18:45	JFC
Perfluoroheptanoic acid (PFHpA)	ND	2.0	0.53	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 18:45	JFC
Perfluoroheptanesulfonic acid (PFHpS)	ND	2.0	1.0	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 18:45	JFC
Perfluorooctanoic acid (PFOA)	ND	2.0	0.71	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 18:45	JFC
Perfluorooctanesulfonic acid (PFOS)	13	2.0	0.68	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 18:45	JFC
Perfluorooctanesulfonamide (FOSA)	ND	2.0	0.83	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 18:45	JFC
6:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	2.0	0.39	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 18:45	JFC
Perfluorononanoic acid (PFNA)	2.9	2.0	0.63	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 18:45	JFC
Perfluorodecanoic acid (PFDA)	ND	2.0	0.62	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 18:45	JFC
Perfluorodecanesulfonic acid (PFDS)	ND	2.0	0.51	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 18:45	JFC
N-EtFOSAA	ND	2.0	0.70	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 18:45	JFC
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	2.0	1.1	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 18:45	JFC
Perfluoroundecanoic acid (PFUnA)	ND	2.0	0.49	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 18:45	JFC
N-MeFOSAA	ND	2.0	0.62	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 18:45	JFC
Perfluorododecanoic acid (PFDoA)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 18:45	JFC
Perfluorotridecanoic acid (PFTrDA)	ND	2.0	0.67	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 18:45	JFC
Perfluorotetradecanoic acid (PFTA)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 18:45	JFC

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
13C-PFHxA	80.6	70-130		5/22/20 18:45
13C-PFDA	79.1	70-130		5/22/20 18:45
d5-NEtFOSAA	89.8	70-130		5/22/20 18:45

Project Location: Barnstable Airport Sample Description: Work Order: 20E0596

Date Received: 5/14/2020
Field Sample #: HW-L

Sampled: 5/13/2020 15:51

Sample ID: 20E0596-04
Sample Matrix: Ground Water

1,4-Dioxane by isotope dilution GC/MS

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
1,4-Dioxane		0.75	0.19	μg/L	1		SW-846 8270D-E	5/15/20	5/18/20 14:16	CLA
	Surrogates		% Recovery	Recovery Limit	s	Flag/Qual				
1,4-Dioxane-d8			21.0	15-110					5/18/20 14:16	

Project Location: Barnstable Airport Sample Description: Work Order: 20E0596

Date Received: 5/14/2020
Field Sample #: OW-18D

Sampled: 5/13/2020 14:08

Sample ID: 20E0596-05
Sample Matrix: Ground Water

1,4-Dioxane by isotope dilution GC/MS

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
1,4-Dioxane		0.35	0.20	μg/L	1		SW-846 8270D-E	5/15/20	5/18/20 14:35	CLA
S	Surrogates		% Recovery	Recovery Limit	s	Flag/Qual				
1,4-Dioxane-d8			23.0	15-110					5/18/20 14:35	

Project Location: Barnstable Airport Sample Description: Work Order: 20E0596

Date Received: 5/14/2020
Field Sample #: OW-18D

Sampled: 5/13/2020 14:08

Sample ID: 20E0596-05
Sample Matrix: Ground Water

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	1.3	2.0	0.64	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 19:06	JFC
Perfluorobutanesulfonic acid (PFBS)	1.6	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 19:06	JFC
Perfluoropentanoic acid (PFPeA)	45	2.0	0.42	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 19:06	JFC
Perfluorohexanoic acid (PFHxA)	40	2.0	0.51	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 19:06	JFC
Perfluorohexanesulfonic acid (PFHxS)	30	2.0	0.77	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 19:06	JFC
Perfluoroheptanoic acid (PFHpA)	12	2.0	0.53	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 19:06	JFC
Perfluoroheptanesulfonic acid (PFHpS)	ND	2.0	1.0	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 19:06	JFC
Perfluorooctanoic acid (PFOA)	9.5	2.0	0.71	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 19:06	JFC
Perfluorooctanesulfonic acid (PFOS)	41	2.0	0.68	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 19:06	JFC
Perfluorooctanesulfonamide (FOSA)	ND	2.0	0.83	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 19:06	JFC
6:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	2.0	0.39	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 19:06	JFC
Perfluorononanoic acid (PFNA)	2.8	2.0	0.63	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 19:06	JFC
Perfluorodecanoic acid (PFDA)	ND	2.0	0.62	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 19:06	JFC
Perfluorodecanesulfonic acid (PFDS)	ND	2.0	0.51	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 19:06	JFC
N-EtFOSAA	ND	2.0	0.70	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 19:06	JFC
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	2.0	1.1	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 19:06	JFC
Perfluoroundecanoic acid (PFUnA)	ND	2.0	0.49	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 19:06	JFC
N-MeFOSAA	ND	2.0	0.62	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 19:06	JFC
Perfluorododecanoic acid (PFDoA)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 19:06	JFC
Perfluorotridecanoic acid (PFTrDA)	ND	2.0	0.67	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 19:06	JFC
Perfluorotetradecanoic acid (PFTA)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 19:06	JFC

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
13C-PFHxA	80.2	70-130		5/22/20 19:06
13C-PFDA	79.4	70-130		5/22/20 19:06
d5-NEtFOSAA	86.6	70-130		5/22/20 19:06

Project Location: Barnstable Airport Sample Description: Work Order: 20E0596

Date Received: 5/14/2020
Field Sample #: OW-19D

Sampled: 5/13/2020 16:51

Sample ID: 20E0596-06
Sample Matrix: Ground Water

1,4-Dioxane by isotope dilution GC/MS

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
1,4-Dioxane		0.30	0.19	μg/L	1		SW-846 8270D-E	5/15/20	5/18/20 14:55	CLA
	Surrogates		% Recovery	Recovery Limit	s	Flag/Qual				
1,4-Dioxane-d8			22.8	15-110					5/18/20 14:55	

Project Location: Barnstable Airport Sample Description: Work Order: 20E0596

Date Received: 5/14/2020
Field Sample #: OW-19D

Sampled: 5/13/2020 16:51

Sample ID: 20E0596-06
Sample Matrix: Ground Water

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	0.90	2.0	0.64	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 19:28	JFC
Perfluorobutanesulfonic acid (PFBS)	8.5	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 19:28	JFC
Perfluoropentanoic acid (PFPeA)	28	2.0	0.42	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 19:28	JFC
Perfluorohexanoic acid (PFHxA)	35	2.0	0.51	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 19:28	JFC
Perfluorohexanesulfonic acid (PFHxS)	120	2.0	0.77	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 19:28	JFC
Perfluoroheptanoic acid (PFHpA)	11	2.0	0.53	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 19:28	JFC
Perfluoroheptanesulfonic acid (PFHpS)	8.2	2.0	1.0	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 19:28	JFC
Perfluorooctanoic acid (PFOA)	23	2.0	0.71	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 19:28	JFC
Perfluorooctanesulfonic acid (PFOS)	310	20	6.8	ng/L	10		SOP 434-PFAAS	5/20/20	5/27/20 15:54	JFC
Perfluorooctanesulfonamide (FOSA)	ND	2.0	0.83	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 19:28	JFC
6:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	2.0	0.39	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 19:28	JFC
Perfluorononanoic acid (PFNA)	1.7	2.0	0.63	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 19:28	JFC
Perfluorodecanoic acid (PFDA)	ND	2.0	0.62	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 19:28	JFC
Perfluorodecanesulfonic acid (PFDS)	ND	2.0	0.51	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 19:28	JFC
N-EtFOSAA	ND	2.0	0.70	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 19:28	JFC
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	2.0	1.1	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 19:28	JFC
Perfluoroundecanoic acid (PFUnA)	ND	2.0	0.49	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 19:28	JFC
N-MeFOSAA	ND	2.0	0.62	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 19:28	JFC
Perfluorododecanoic acid (PFDoA)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 19:28	JFC
Perfluorotridecanoic acid (PFTrDA)	ND	2.0	0.67	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 19:28	JFC
Perfluorotetradecanoic acid (PFTA)	ND	2.0	0.50	ng/L	1		SOP 434-PFAAS	5/20/20	5/22/20 19:28	JFC

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
13C-PFHxA	*	70-130	S-01	5/27/20 15:54
13C-PFHxA	84.2	70-130		5/22/20 19:28
13C-PFDA	*	70-130	S-01	5/27/20 15:54
13C-PFDA	75.5	70-130		5/22/20 19:28
d5-NEtFOSAA	*	70-130	S-01	5/27/20 15:54
d5-NEtFOSAA	76.6	70-130		5/22/20 19:28

Project Location: Barnstable Airport Sample Description: Work Order: 20E0596

Date Received: 5/14/2020
Field Sample #: A14

Sampled: 5/13/2020 16:33

55.9

52.6

50-150

50-150

Sample ID: 20E0596-07
Sample Matrix: Soil

M6PFDA

M3PFBS

Semivolatile O	rganic Compour	nds by - LC/MS-MS
----------------	----------------	-------------------

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	1.4	1.1	0.36	μg/kg dry	1		SOP-466 PFAS	5/28/20	5/30/20 2:16	JFC
Perfluorobutanesulfonic acid (PFBS)	ND	1.1	0.16	μg/kg dry	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:16	JFC
Perfluoropentanoic acid (PFPeA)	5.3	1.1	0.085	μg/kg dry	1		SOP-466 PFAS	5/28/20	5/30/20 2:16	JFC
Perfluorohexanoic acid (PFHxA)	1.2	1.1	0.20	μg/kg dry	1		SOP-466 PFAS	5/28/20	5/30/20 2:16	JFC
11Cl-PF3OUdS (F53B Major)	ND	1.1	0.21	μg/kg dry	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:16	JFC
9Cl-PF3ONS (F53B Minor)	ND	1.1	0.16	μg/kg dry	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:16	JFC
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.1	0.14	μg/kg dry	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:16	JFC
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	2.1	1.0	μg/kg dry	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:16	JFC
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	1.1	0.52	μg/kg dry	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:16	JFC
Perfluorodecanoic acid (PFDA)	0.95	1.1	0.17	μg/kg dry	1	J	SOP-466 PFAS	5/28/20	5/30/20 2:16	JFC
Perfluorododecanoic acid (PFDoA)	0.35	1.1	0.10	μg/kg dry	1	J	SOP-466 PFAS	5/28/20	5/30/20 2:16	JFC
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	1.1	0.077	μg/kg dry	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:16	JFC
Perfluoroheptanesulfonic acid (PFHpS)	ND	1.1	0.58	μg/kg dry	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:16	JFC
N-EtFOSAA	ND	1.1	0.36	μg/kg dry	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:16	JFC
N-MeFOSAA	ND	1.1	0.26	μg/kg dry	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:16	JFC
Perfluorotetradecanoic acid (PFTA)	ND	1.1	0.29	μg/kg dry	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:16	JFC
Perfluorotridecanoic acid (PFTrDA)	0.60	1.1	0.24	μg/kg dry	1	J	SOP-466 PFAS	5/28/20	5/30/20 2:16	JFC
4:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	1.1	0.23	μg/kg dry	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:16	JFC
Perfluorodecanesulfonic acid (PFDS)	ND	1.1	0.43	μg/kg dry	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:16	JFC
Perfluorooctanesulfonamide (FOSA)	ND	1.1	0.24	μg/kg dry	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:16	JFC
Perfluorononanesulfonic acid (PFNS)	ND	1.1	0.42	μg/kg dry	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:16	JFC
Perfluoro-1-hexanesulfonamide (FHxSA)	ND	1.1	0.17	μg/kg dry	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:16	JFC
Perfluoro-1-butanesulfonamide (FBSA)	ND	1.1	0.13	μg/kg dry	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:16	JFC
Perfluorohexanesulfonic acid (PFHxS)	ND	1.1	0.24	μg/kg dry	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:16	JFC
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	1.1	0.25	μg/kg dry	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:16	JFC
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	1.1	0.091	μg/kg dry	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:16	JFC
6:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	1.1	0.25	μg/kg dry	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:16	JFC
Perfluoropetanesulfonic acid (PFPeS)	ND	1.1	0.27	μg/kg dry	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:16	JFC
Perfluoroundecanoic acid (PFUnA)	1.3	1.1	0.23	μg/kg dry	1		SOP-466 PFAS	5/28/20	5/30/20 2:16	JFC
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	1.1	0.28	μg/kg dry	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:16	JFC
Perfluoroheptanoic acid (PFHpA)	0.51	1.1	0.24	μg/kg dry	1	J	SOP-466 PFAS	5/28/20	5/30/20 2:16	JFC
Perfluorooctanoic acid (PFOA)	0.68	1.1	0.16	μg/kg dry	1	J	SOP-466 PFAS	5/28/20	5/30/20 2:16	JFC
Perfluorooctanesulfonic acid (PFOS)	0.32	1.1	0.19	μg/kg dry	1	J	SOP-466 PFAS	5/28/20	5/30/20 2:16	JFC
Perfluorononanoic acid (PFNA)	0.54	1.1	0.18	μg/kg dry	1	J	SOP-466 PFAS	5/28/20	5/30/20 2:16	JFC
Surrogates		% Rec	overy	Recovery Limit	s	Flag/Qual				
M8FOSA		52.5		50-150					5/30/20 2:16	
M2-4:2FTS		65.3		50-150					5/30/20 2:16	
M2PFTA		23.4	*	50-150		S-19			5/30/20 2:16	
M2-8:2FTS		103		50-150					5/30/20 2:16	
MPFBA M2HEDO DA		62.0		50-150					5/30/20 2:16	
M3HFPO-DA		54.3		50-150					5/30/20 2:16	

5/30/20 2:16

5/30/20 2:16

Project Location: Barnstable Airport Sample Description: Work Order: 20E0596

Date Received: 5/14/2020
Field Sample #: A14

Sampled: 5/13/2020 16:33

Sample ID: 20E0596-07
Sample Matrix: Soil

							Date	Date/Time	
Analyte	Results RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Surrogates	% Rec	covery	Recovery Limits	5	Flag/Qual				
M7PFUnA	60.8		50-150					5/30/20 2:16	_
M2-6:2FTS	81.5		50-150					5/30/20 2:16	
M5PFPeA	34.6	*	50-150		S-19			5/30/20 2:16	
M5PFHxA	52.4		50-150					5/30/20 2:16	
M3PFHxS	53.6		50-150					5/30/20 2:16	
M4PFHpA	48.5	*	50-150		S-19			5/30/20 2:16	
M8PFOA	59.6		50-150					5/30/20 2:16	
M8PFOS	54.4		50-150					5/30/20 2:16	
M9PFNA	56.2		50-150					5/30/20 2:16	
MPFDoA	51.6		50-150					5/30/20 2:16	
d5-NEtFOSAA	72.3		50-150					5/30/20 2:16	
d3-NMeFOSAA	61.0		50-150					5/30/20 2:16	

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Barnstable Airport Sample Description:

Date Received: 5/14/2020
Field Sample #: A14

Sampled: 5/13/2020 16:33

Sample ID: 20E0596-07
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids		80.4		% Wt	1		SM 2540G	5/15/20	5/15/20 16:07	CBM

Project Location: Barnstable Airport Sample Description: Work Order: 20E0596

Date Received: 5/14/2020
Field Sample #: A15

Sampled: 5/13/2020 16:24

66.5

69.7

50-150

50-150

Sample ID: 20E0596-08
Sample Matrix: Soil

M6PFDA

M3PFBS

Semivolatile	Organic	Compounds by	y - LC/MS-MS
--------------	---------	--------------	--------------

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	ND	0.92	0.32	μg/kg dry	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:45	JFC
Perfluorobutanesulfonic acid (PFBS)	ND	0.92	0.14	μg/kg dry	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:45	JFC
Perfluoropentanoic acid (PFPeA)	0.16	0.92	0.074	μg/kg dry	1	J	SOP-466 PFAS	5/28/20	5/30/20 2:45	JFC
Perfluorohexanoic acid (PFHxA)	ND	0.92	0.18	μg/kg dry	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:45	JFC
11Cl-PF3OUdS (F53B Major)	ND	0.92	0.18	μg/kg dry	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:45	JFC
9Cl-PF3ONS (F53B Minor)	ND	0.92	0.14	μg/kg dry	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:45	JFC
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	ND	0.92	0.12	μg/kg dry	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:45	JFC
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.8	0.87	μg/kg dry	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:45	JFC
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	0.92	0.45	$\mu g/kg \ dry$	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:45	JFC
Perfluorodecanoic acid (PFDA)	ND	0.92	0.15	μg/kg dry	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:45	JFC
Perfluorododecanoic acid (PFDoA)	ND	0.92	0.091	μg/kg dry	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:45	JFC
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	0.92	0.067	μg/kg dry	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:45	JFC
Perfluoroheptanesulfonic acid (PFHpS)	ND	0.92	0.50	$\mu g/kg \ dry$	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:45	JFC
N-EtFOSAA	ND	0.92	0.31	μg/kg dry	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:45	JFC
N-MeFOSAA	ND	0.92	0.23	μg/kg dry	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:45	JFC
Perfluorotetradecanoic acid (PFTA)	ND	0.92	0.25	μg/kg dry	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:45	JFC
Perfluorotridecanoic acid (PFTrDA)	ND	0.92	0.21	μg/kg dry	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:45	JFC
4:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	0.92	0.20	μg/kg dry	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:45	JFC
Perfluorodecanesulfonic acid (PFDS)	ND	0.92	0.37	μg/kg dry	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:45	JFC
Perfluorooctanesulfonamide (FOSA)	ND	0.92	0.21	μg/kg dry	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:45	JFC
Perfluorononanesulfonic acid (PFNS)	ND	0.92	0.37	μg/kg dry	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:45	JFC
Perfluoro-1-hexanesulfonamide (FHxSA)	ND	0.92	0.15	μg/kg dry	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:45	JFC
Perfluoro-1-butanesulfonamide (FBSA)	ND	0.92	0.11	μg/kg dry	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:45	JFC
Perfluorohexanesulfonic acid (PFHxS)	ND	0.92	0.21	μg/kg dry	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:45	JFC
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	0.92	0.22	μg/kg dry	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:45	JFC
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	0.92	0.079	μg/kg dry	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:45	JFC
6:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	0.92	0.22	μg/kg dry	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:45	JFC
Perfluoropetanesulfonic acid (PFPeS)	ND	0.92	0.24	μg/kg dry	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:45	JFC
Perfluoroundecanoic acid (PFUnA)	ND	0.92	0.20	μg/kg dry	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:45	JFC
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	0.92	0.24	μg/kg dry	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:45	JFC
Perfluoroheptanoic acid (PFHpA)	ND	0.92	0.21	μg/kg dry	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:45	JFC
Perfluorooctanoic acid (PFOA)	ND	0.92	0.14	μg/kg dry	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:45	JFC
Perfluorooctanesulfonic acid (PFOS)	0.29	0.92	0.16	μg/kg dry	1	J	SOP-466 PFAS	5/28/20	5/30/20 2:45	JFC
Perfluorononanoic acid (PFNA)	ND	0.92	0.15	μg/kg dry	1	U	SOP-466 PFAS	5/28/20	5/30/20 2:45	JFC
Surrogates		% Reco	very	Recovery Limit	ts	Flag/Qual				
M8FOSA		59.7		50-150					5/30/20 2:45	
M2-4:2FTS		61.1		50-150					5/30/20 2:45	
M2PFTA		56.7		50-150					5/30/20 2:45	
M2-8:2FTS		77.7		50-150					5/30/20 2:45	
MPFBA		71.2		50-150					5/30/20 2:45	
M3HFPO-DA		64.9		50-150					5/30/20 2:45	

5/30/20 2:45

5/30/20 2:45

Project Location: Barnstable Airport Sample Description: Work Order: 20E0596

Date Received: 5/14/2020
Field Sample #: A15

Sampled: 5/13/2020 16:24

Sample ID: 20E0596-08
Sample Matrix: Soil

Semivolatile Organic Compounds by - LC/MS-MS

						Date	Date/Time	
Analyte	Results RL	DL Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Surrogates	% Recover	y Recovery Lim	its	Flag/Qual				
M7PFUnA	69.3	50-150					5/30/20 2:45	
M2-6:2FTS	64.6	50-150					5/30/20 2:45	
M5PFPeA	63.4	50-150					5/30/20 2:45	
M5PFHxA	68.2	50-150					5/30/20 2:45	
M3PFHxS	61.8	50-150					5/30/20 2:45	
M4PFHpA	65.0	50-150					5/30/20 2:45	
M8PFOA	69.8	50-150					5/30/20 2:45	
M8PFOS	71.1	50-150					5/30/20 2:45	
M9PFNA	71.4	50-150					5/30/20 2:45	
MPFDoA	64.6	50-150					5/30/20 2:45	
d5-NEtFOSAA	90.5	50-150					5/30/20 2:45	
d3-NMeFOSAA	78.5	50-150					5/30/20 2:45	

Work Order: 20E0596

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Barnstable Airport Sample Description:

Date Received: 5/14/2020

Field Sample #: A15

Sampled: 5/13/2020 16:24

Sample ID: 20E0596-08
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids		90.8		% Wt	1		SM 2540G	5/16/20	5/18/20 7:04	AVF

Sample Extraction Data

Prep Method: % Solids	Analytical Method: SM 2540G
-----------------------	-----------------------------

Lab Number [Field ID]	Batch	Date
20E0596-07 [A14]	B258101	05/15/20

Prep Method: % Solids Analytical Method: SM 2540G

Lab Number [Field ID]	Batch	Date
20E0596-08 [A15]	B258157	05/16/20

Prep Method: SOP 434-PFAAS Analytical Method: SOP 434-PFAAS

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20E0596-01 [HW-D (M)]	B258207	250	1.00	05/20/20
20E0596-03 [HW-D (dd)]	B258207	250	1.00	05/20/20
20E0596-05 [OW-18D]	B258207	250	1.00	05/20/20
20E0596-06 [OW-19D]	B258207	250	1.00	05/20/20
20E0596-06RE1 [OW-19D]	B258207	250	1.00	05/20/20

Prep Method: SOP 434-PFAAS Analytical Method: SOP 434-PFAAS

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20E0596-02RE1 [HW-D (d)]	B258727	250	1.00	05/27/20

Prep Method: SOP 465-PFAAS Analytical Method: SOP-466 PFAS

Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date
20E0596-07RE1 [A14]	B258609	5.87	10.0	05/28/20
20E0596-08RE1 [A15]	B258609	5.99	10.0	05/28/20

Prep Method: SW-846 3510C Analytical Method: SW-846 8270D-E

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20E0596-04 [HW-L]	B258084	1040	1.00	05/15/20
20E0596-05 [OW-18D]	B258084	1020	1.00	05/15/20
20E0596-06 [OW-19D]	B258084	1040	1.00	05/15/20

QUALITY CONTROL

1,4-Dioxane by isotope dilution GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B258084 - SW-846 3510C										
Blank (B258084-BLK1)				Prepared: 05	5/15/20 Anal	yzed: 05/18/2	20			
1,4-Dioxane	ND	0.20	μg/L							
Surrogate: 1,4-Dioxane-d8	2.76		μg/L	10.0		27.6	15-110			
LCS (B258084-BS1)				Prepared: 05	5/15/20 Anal	yzed: 05/18/2	20			
1,4-Dioxane	10.2	0.20	μg/L	10.0		102	40-140			
Surrogate: 1,4-Dioxane-d8	3.14		μg/L	10.0		31.4	15-110			
LCS Dup (B258084-BSD1)				Prepared: 05	5/15/20 Anal	yzed: 05/18/2	20			
1,4-Dioxane	10.7	0.20	μg/L	10.0		107	40-140	4.86	30	
Surrogate: 1,4-Dioxane-d8	2.74		μg/L	10.0		27.4	15-110			

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B258207 - SOP 434-PFAAS										
Blank (B258207-BLK1)				Prepared: 05	5/20/20 Analy	yzed: 05/22/	20			
Perfluorobutanoic acid (PFBA)	ND	2.0	ng/L							
Perfluorobutanesulfonic acid (PFBS)	ND	2.0	ng/L							
erfluoropentanoic acid (PFPeA)	ND	2.0	ng/L							
Perfluorohexanoic acid (PFHxA)	ND	2.0	ng/L							
erfluorohexanesulfonic acid (PFHxS)	ND	2.0	ng/L							
erfluoroheptanoic acid (PFHpA)	ND	2.0	ng/L							
erfluoroheptanesulfonic acid (PFHpS)	ND	2.0	ng/L							
erfluorooctanoic acid (PFOA)	ND	2.0	ng/L							
erfluorooctanesulfonic acid (PFOS)	ND	2.0	ng/L							
erfluorooctanesulfonamide (FOSA)	ND	2.0	ng/L							
:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	2.0	ng/L							
erfluorononanoic acid (PFNA)	ND	2.0	ng/L							
erfluorodecanoic acid (PFDA)	ND	2.0	ng/L							
erfluorodecanesulfonic acid (PFDS)	ND	2.0	ng/L							
I-EtFOSAA	ND	2.0	ng/L							
:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	2.0	ng/L							
erfluoroundecanoic acid (PFUnA)	ND	2.0	ng/L							
-MeFOSAA	ND	2.0	ng/L							
erfluorododecanoic acid (PFDoA)	ND	2.0	ng/L							
erfluorotridecanoic acid (PFTrDA)	ND	2.0	ng/L							
erfluorotetradecanoic acid (PFTA)	ND	2.0	ng/L							
urrogate: 13C-PFHxA	32.3		ng/L	40.0		80.6	70-130			
urrogate: 13C-PFDA	31.2		ng/L	40.0		78.0	70-130			
urrogate: d5-NEtFOSAA	139		ng/L	160		87.0	70-130			
CS (B258207-BS1)				Prepared: 05	5/20/20 Analy	yzed: 05/22/	20			
erfluorobutanoic acid (PFBA)	1.76	2.0	ng/L	2.00		88.2	70-130			
Perfluorobutanesulfonic acid (PFBS)	1.65	2.0	ng/L	1.77		93.3	70-130			
erfluoropentanoic acid (PFPeA)	1.88	2.0	ng/L	2.00		93.8	70-130			
erfluorohexanoic acid (PFHxA)	2.02	2.0	ng/L	2.00		101	70-130			
erfluorohexanesulfonic acid (PFHxS)	1.59	2.0	ng/L	1.82		87.6	70-130			
erfluoroheptanoic acid (PFHpA)	1.86	2.0	ng/L	2.00		92.9	70-130			
erfluoroheptanesulfonic acid (PFHpS)	1.52	2.0	ng/L	1.90		80.2	70-130			
erfluorooctanoic acid (PFOA)	1.97	2.0	ng/L	2.00		98.7	70-130			
Perfluorooctanesulfonic acid (PFOS)	1.98	2.0	ng/L	1.85		107	70-130			
erfluorooctanesulfonamide (FOSA)	1.73	2.0	ng/L	2.00		86.5	70-130			
:2 Fluorotelomersulfonic acid (6:2FTS A)	2.35	2.0	ng/L	2.00		117	70-130			
erfluorononanoic acid (PFNA)	2.04	2.0	ng/L	2.00		102	70-130			
erfluorodecanoic acid (PFDA)	2.09	2.0	ng/L	2.00		104	70-130			
erfluorodecanesulfonic acid (PFDS)	1.90	2.0	ng/L	1.93		98.4	70-130			
I-EtFOSAA	2.10	2.0	ng/L	2.00		105	70-130			
:2 Fluorotelomersulfonic acid (8:2FTS A)	2.12	2.0	ng/L	1.92		110	70-130			
erfluoroundecanoic acid (PFUnA)	2.20	2.0	ng/L	2.00		110	70-130			
I-MeFOSAA	1.91	2.0	ng/L	2.00		95.5	70-130			
erfluorododecanoic acid (PFDoA)	2.30	2.0	ng/L	2.00		115	70-130			
erfluorotridecanoic acid (PFTrDA)	2.59	2.0	ng/L	2.00		129	70-130			
Perfluorotetradecanoic acid (PFTA)	3.20	2.0	ng/L	2.00		160 *				L-01
urrogate: 13C-PFHxA	35.9		ng/L	40.0		89.7	70-130			
urrogate: 13C-PFDA	38.4		ng/L	40.0		96.0	70-130			
urrogate: d5-NEtFOSAA	173		ng/L	160		108	70-130			

QUALITY CONTROL

Semivolatile Organic Compounds by - LC/MS-MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B258609 - SOP 465-PFAAS										
Blank (B258609-BLK1)			<u> </u>	Prepared: 05	5/28/20 Analy	yzed: 05/29/2	20			
Perfluorobutanoic acid (PFBA)	ND	0.89	μg/kg wet							U
Perfluorobutanesulfonic acid (PFBS)	ND	0.89	μg/kg wet							U
Perfluoropentanoic acid (PFPeA)	ND	0.89	μg/kg wet							U
Perfluorohexanoic acid (PFHxA)	ND	0.89	μg/kg wet							U
1Cl-PF3OUdS (F53B Major)	ND	0.89	μg/kg wet							U
OCI-PF3ONS (F53B Minor)	ND	0.89	μg/kg wet							U
1,8-dioxa-3H-perfluorononanoic acid	ND	0.89	μg/kg wet							U
ADONA)										
Hexafluoropropylene oxide dimer acid	ND	1.8	μg/kg wet							U
HFPO-DA) 3:2 Fluorotelomersulfonic acid (8:2FTS A)	3115	0.89	ug/kg syst							T T
· · · · · · · · · · · · · · · · · · ·	ND		μg/kg wet							U
Perfluorodecanoic acid (PFDA)	ND	0.89	μg/kg wet							U
Perfluorododecanoic acid (PFDoA)	ND	0.89	μg/kg wet							U
Perfluoro(2-ethoxyethane)sulfonic acid PFEESA)	ND	0.89	μg/kg wet							U
Perfluoroheptanesulfonic acid (PFHpS)	ND	0.89	μg/kg wet							U
V-EtFOSAA	ND ND	0.89	μg/kg wet							U
V-MeFOSAA	ND ND	0.89	μg/kg wet μg/kg wet							U
Perfluorotetradecanoic acid (PFTA)		0.89	μg/kg wet μg/kg wet							U
Perfluorotridecanoic acid (PFTrDA)	ND	0.89	μg/kg wet μg/kg wet							U
4:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	0.89	μg/kg wet μg/kg wet							U
Perfluorodecanesulfonic acid (4:2F1SA)	ND	0.89	μg/kg wet μg/kg wet							U
Perfluorooctanesulfonamide (FOSA)	ND									
Perfluorooctanesulfonic acid (PFNS)	ND	0.89	μg/kg wet							U
· · · ·	ND	0.89	μg/kg wet							U
Perfluoro-1-hexanesulfonamide (FHxSA)	ND	0.89	μg/kg wet							U
Perfluoro-1-butanesulfonamide (FBSA)	ND	0.89	μg/kg wet							U
Perfluorohexanesulfonic acid (PFHxS)	ND	0.89	μg/kg wet							U
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	0.89	μg/kg wet							U
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	0.89	μg/kg wet							U
5:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	0.89	μg/kg wet							U
Perfluoropetanesulfonic acid (PFPeS)	ND	0.89	μg/kg wet							U
Perfluoroundecanoic acid (PFUnA)	ND	0.89	μg/kg wet							U
Nonafluoro-3,6-dioxaheptanoic acid	ND	0.89	μg/kg wet							U
Perfluoroheptanoic acid (PFHpA)	ND	0.89	μg/kg wet							U
Perfluorooctanoic acid (PFOA)	ND		μg/kg wet							U
Perfluorooctanesulfonic acid (PFOS)	ND	0.89	μg/kg wet							U
Perfluorononanoic acid (PFNA)	ND	0.89	μg/kg wet							U
Surrogate: M8FOSA	2.93		$\mu g/kg$ wet	3.56		82.3	50-150			
Surrogate: M2-4:2FTS	2.79		$\mu g/kg$ wet	3.33		83.7	50-150			
Surrogate: M2PFTA	1.96		$\mu g/kg$ wet	3.56		54.9	50-150			
Surrogate: M2-8:2FTS	2.75		μg/kg wet	3.41		80.7	50-150			
Surrogate: MPFBA	3.11		μg/kg wet	3.56		87.2	50-150			
Surrogate: M3HFPO-DA	3.00		μg/kg wet	3.56		84.3	50-150			
Surrogate: M6PFDA	3.08		μg/kg wet	3.56		86.4	50-150			
Surrogate: M3PFBS	2.76		μg/kg wet	3.31		83.3	50-150			
Surrogate: M7PFUnA	2.99		μg/kg wet	3.56		84.1	50-150			
Surrogate: M2-6:2FTS	2.38		μg/kg wet	3.38		70.5	50-150			
surrogate: M5PFPeA	2.84		μg/kg wet	3.56		79.7	50-150			
Surrogate: M5PFHxA	3.02		μg/kg wet	3.56		84.8	50-150			
Surrogate: M3PFHxS	2.83		μg/kg wet	3.37		84.1	50-150			
urrogate: M4PFHpA	3.03		μg/kg wet	3.56		85.2	50-150			
Surrogate: M8PFOA	3.11		μg/kg wet	3.56		87.3	50-150			

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
eatch B258609 - SOP 465-PFAAS										
elank (B258609-BLK1)				Prepared: 05	5/28/20 Analy	zed: 05/29/2	20			
urrogate: M8PFOS	2.85		μg/kg wet	3.41		83.5	50-150		·	
urrogate: M9PFNA	3.04		μg/kg wet	3.56		85.4	50-150			
urrogate: MPFDoA	2.56		μg/kg wet	3.56		71.8	50-150			
urrogate: d5-NEtFOSAA	3.04		μg/kg wet	3.56		85.3	50-150			
urrogate: d3-NMeFOSAA	2.82		μg/kg wet	3.56		79.2	50-150			
CS (B258609-BS1)				Prepared: 05	5/28/20 Analy	zed: 05/29/2				
erfluorobutanoic acid (PFBA)	2.52	0.91	μg/kg wet	2.27		111	71-135			
erfluorobutanesulfonic acid (PFBS)	2.32	0.91	μg/kg wet	2.01		116	72-128			
erfluoropentanoic acid (PFPeA)	2.90	0.91	μg/kg wet	2.27		128	69-132			
erfluorohexanoic acid (PFHxA)	2.35	0.91	μg/kg wet	2.27		104	70-132			
Cl-PF3OUdS (F53B Major)	2.10	0.91	μg/kg wet	2.14		98.5	50-150			
Cl-PF3ONS (F53B Minor)	2.17	0.91	μg/kg wet	2.11		103	50-150			
8-dioxa-3H-perfluorononanoic acid ADONA)	2.48	0.91	μg/kg wet	2.14		116	50-150			
exafluoropropylene oxide dimer acid HFPO-DA)	2.23	1.8	$\mu g/kg$ wet	2.27		98.5	50-150			
2 Fluorotelomersulfonic acid (8:2FTS	3.00	0.91	μg/kg wet	2.17		138 *	65-137			L-05
erfluorodecanoic acid (PFDA)	2.40	0.91	μg/kg wet	2.27		106	69-133			
erfluorododecanoic acid (PFDoA)	2.47	0.91	μg/kg wet	2.27		109	69-135			
erfluoro(2-ethoxyethane)sulfonic acid	1.88	0.91	μg/kg wet	2.02		93.1	50-150			
erfluoroheptanesulfonic acid (PFHpS)	2.51	0.91	μg/kg wet	2.16		116	70-132			
-EtFOSAA	2.06	0.91	μg/kg wet	2.27		90.8	61-139			
-MeFOSAA	1.82	0.91	μg/kg wet	2.27		80.2	63-144			
erfluorotetradecanoic acid (PFTA)	2.39	0.91	μg/kg wet	2.27		105	69-133			
erfluorotridecanoic acid (PFTrDA)	2.98	0.91	μg/kg wet	2.27		131	66-139			
2 Fluorotelomersulfonic acid (4:2FTS A)	2.58	0.91	μg/kg wet	2.12		122	62-145			
erfluorodecanesulfonic acid (PFDS)	2.17	0.91	μg/kg wet	2.19		99.0	59-134			
erfluorooctanesulfonamide (FOSA)	2.44	0.91	μg/kg wet	2.27		107	67-137			
erfluorononanesulfonic acid (PFNS)	2.66	0.91	μg/kg wet	2.18		122	69-125			
erfluoro-1-hexanesulfonamide (FHxSA)	2.39	0.91	μg/kg wet	2.27		105	50-150			
erfluoro-1-butanesulfonamide (FBSA)	2.77	0.91	μg/kg wet	2.27		122	50-150			
erfluorohexanesulfonic acid (PFHxS)	1.90	0.91	μg/kg wet	2.07		91.8	67-130			
erfluoro-4-oxapentanoic acid (PFMPA)	2.26	0.91	μg/kg wet	2.27		99.7	50-150			
erfluoro-5-oxahexanoic acid (PFMBA)	2.65	0.91	μg/kg wet μg/kg wet	2.27		117	50-150			
2 Fluorotelomersulfonic acid (6:2FTS A)	2.84	0.91	μg/kg wet	2.15		132	64-140			
erfluoropetanesulfonic acid (PFPeS)	2.24	0.91	μg/kg wet	2.13		105	73-123			
erfluoroundecanoic acid (PFUnA)	2.41	0.91	μg/kg wet	2.27		106	64-136			
onafluoro-3,6-dioxaheptanoic acid	1.87	0.91	μg/kg wet	2.27		82.4	50-150			
erfluoroheptanoic acid (PFHpA)	2.57	0.91	μg/kg wet	2.27		113	71-131			
erfluorooctanoic acid (PFOA)	2.52	0.91	μg/kg wet	2.27		111	69-133			
erfluorooctanesulfonic acid (PFOS)	1.89	0.91	μg/kg wet	2.10		90.0	68-136			
erfluorononanoic acid (PFNA)	2.39	0.91	μg/kg wet	2.27		105	72-129			
urrogate: M8FOSA	2.80		μg/kg wet	3.63		77.1	50-150			
urrogate: M2-4:2FTS	2.63		μg/kg wet	3.39		77.6	50-150			
urrogate: M2PFTA	2.08		μg/kg wet	3.63		57.3	50-150			
urrogate: M2-8:2FTS	2.66		μg/kg wet	3.48		76.6	50-150			
urrogate: MPFBA	2.92		μg/kg wet	3.63		80.5	50-150			
urrogate: M3HFPO-DA	2.86		μg/kg wet	3.63		78.7	50-150			
urrogate: M6PFDA	2.87		μg/kg wet	3.63		79.1	50-150			

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B258609 - SOP 465-PFAAS										
LCS (B258609-BS1)				Prepared: 05	/28/20 Analy	zed: 05/29/2	20			
Surrogate: M7PFUnA	2.80		μg/kg wet	3.63		77.3	50-150			
Surrogate: M2-6:2FTS	2.40		$\mu g/kg$ wet	3.44		69.8	50-150			
Surrogate: M5PFPeA	2.61		$\mu g/kg$ wet	3.63		71.8	50-150			
Surrogate: M5PFHxA	2.86		$\mu g/kg$ wet	3.63		78.7	50-150			
Surrogate: M3PFHxS	2.66		μg/kg wet	3.43		77.5	50-150			
Surrogate: M4PFHpA	2.73		μg/kg wet	3.63		75.3	50-150			
Surrogate: M8PFOA	2.85		μg/kg wet	3.63		78.4	50-150			
Surrogate: M8PFOS	2.77		μg/kg wet	3.47		79.7	50-150			
Surrogate: M9PFNA	2.87		μg/kg wet	3.63		79.0	50-150			
Surrogate: MPFDoA	2.67		μg/kg wet	3.63		73.7	50-150			
Surrogate: d5-NEtFOSAA	2.90		μg/kg wet	3.63		80.0	50-150			
Surrogate: d3-NMeFOSAA	2.84		μg/kg wet	3.63		78.1	50-150			
Batch B258727 - SOP 434-PFAAS										
Blank (B258727-BLK1)				Prepared: 05	/27/20 Analy	yzed: 05/31/2	20			
Perfluorobutanoic acid (PFBA)	ND	2.0	ng/L							
Perfluorobutanesulfonic acid (PFBS)	ND	2.0	ng/L							
Perfluoropentanoic acid (PFPeA)	ND	2.0	ng/L							
Perfluorohexanoic acid (PFHxA)	ND	2.0	ng/L							
Perfluorohexanesulfonic acid (PFHxS)	ND	2.0	ng/L							
Perfluoroheptanoic acid (PFHpA)	ND	2.0	ng/L							
Perfluoroheptanesulfonic acid (PFHpS)	ND	2.0	ng/L							
Perfluorooctanoic acid (PFOA)	ND	2.0	ng/L							
Perfluorooctanesulfonic acid (PFOS)	ND	2.0	ng/L							
Perfluorooctanesulfonamide (FOSA)	ND	2.0	ng/L							
6:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	2.0	ng/L							
Perfluorononanoic acid (PFNA)	ND	2.0	ng/L							
Perfluorodecanoic acid (PFDA)	ND	2.0	ng/L							
Perfluorodecanesulfonic acid (PFDS)	ND	2.0	ng/L							
N-EtFOSAA	ND ND	2.0	ng/L							
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND ND	2.0	ng/L ng/L							
Perfluoroundecanoic acid (PFUnA)	ND ND	2.0	ng/L ng/L							
N-MeFOSAA	ND ND	2.0	ng/L ng/L							
Perfluorododecanoic acid (PFDoA)		2.0	ng/L ng/L							
Perfluorotridecanoic acid (PFTrDA)	ND	2.0	ng/L ng/L							
Perfluorotetradecanoic acid (PFTA)	ND ND	2.0	ng/L ng/L							
Surrogate: 13C-PFHxA	39.8		ng/L	40.0		99.5	70-130			
Surrogate: 13C-PFDA	41.8		ng/L	40.0		104	70-130			
Surrogate: d5-NEtFOSAA	189		ng/L	160		118	70-130			
LCS (B258727-BS1)				Prepared: 05	/27/20 Analy	zed: 06/01/2	20			
Perfluorobutanoic acid (PFBA)	8.57	2.0	ng/L	10.0		85.7	70-130			
Perfluorobutanesulfonic acid (PFBS)	7.63	2.0	ng/L	8.85		86.2	70-130			
Perfluoropentanoic acid (PFPeA)	9.30	2.0	ng/L	10.0		93.0	70-130			
Perfluorohexanoic acid (PFHxA)	8.97	2.0	ng/L	10.0		89.7	70-130			
Perfluorohexanesulfonic acid (PFHxS)	7.77	2.0	ng/L	9.10		85.3	70-130			
Perfluoroheptanoic acid (PFHpA)	8.81	2.0	ng/L	10.0		88.1	70-130			
Perfluoroheptanesulfonic acid (PFHpS)	7.32	2.0	ng/L	9.50		77.0	70-130			
Perfluorooctanoic acid (PFOA)	9.44	2.0	ng/L	10.0		94.4	70-130			
Perfluorooctanesulfonic acid (PFOS)	7.71	2.0	ng/L	9.25		83.4	70-130			
Perfluorooctanesulfonamide (FOSA)		2.0	ng/L ng/L	10.0		88.7	70-130			
6:2 Fluorotelomersulfonic acid (6:2FTS A)	8.87 8.38	2.0	11g/ L	10.0		00.7	70-130			

QUALITY CONTROL

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B258727 - SOP 434-PFAAS										
LCS (B258727-BS1)	Prepared: 05/27/20 Analyzed: 06/01/20									
Perfluorononanoic acid (PFNA)	8.91	2.0	ng/L	10.0		89.1	70-130			
Perfluorodecanoic acid (PFDA)	9.41	2.0	ng/L	10.0		94.1	70-130			
Perfluorodecanesulfonic acid (PFDS)	8.24	2.0	ng/L	9.65		85.4	70-130			
N-EtFOSAA	9.56	2.0	ng/L	10.0		95.6	70-130			
8:2 Fluorotelomersulfonic acid (8:2FTS A)	8.45	2.0	ng/L	9.60		88.0	70-130			
Perfluoroundecanoic acid (PFUnA)	9.39	2.0	ng/L	10.0		93.9	70-130			
N-MeFOSAA	9.40	2.0	ng/L	10.0		94.0	70-130			
Perfluorododecanoic acid (PFDoA)	8.62	2.0	ng/L	10.0		86.2	70-130			
Perfluorotridecanoic acid (PFTrDA)	8.91	2.0	ng/L	10.0		89.1	70-130			
Perfluorotetradecanoic acid (PFTA)	8.15	2.0	ng/L	10.0		81.5	70-130			
Surrogate: 13C-PFHxA	39.4		ng/L	40.0		98.6	70-130			
Surrogate: 13C-PFDA	40.3		ng/L	40.0		101	70-130			
Surrogate: d5-NEtFOSAA	172		ng/L	160		107	70-130			

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
J	Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).
L-01	Laboratory fortified blank /laboratory control sample recovery outside of control limits. Data validation is not affected since all results are "not detected" for all samples in this batch for this compound and bias is on the high side.
L-05	Laboratory fortified blank/laboratory control sample recovery is outside of control limits. Reported value for this compound is likely to be biased on the high side.
PF-05	Opening calibration verification was within control criteria. Closing calibration verification was outside of criteria and biased on the low side. Re-analysis yielded similar non-conformance.
PF-06	Opening calibration verification was within control criteria. Closing calibration verification was outside of criteria and biased on the high side. Re-analysis yielded similar non-conformance.
S-01	The surrogate recovery for this sample is not available due to sample dilution below the surrogate reporting limit required from high analyte concentration and/or matrix interferences.
S-19	Surrogate recovery is outside of control limits, matrix interference suspected. Reanalysis yielded similar surrogate non-conformance.
U	Analyte included in the analysis, but not detected
V-06	Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side for this compound.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
SOP 434-PFAAS in Water	
Perfluorobutanoic acid (PFBA)	NH-P
Perfluorobutanesulfonic acid (PFBS)	NH-P
Perfluoropentanoic acid (PFPeA)	NH-P
Perfluorohexanoic acid (PFHxA)	NH-P
Perfluorohexanesulfonic acid (PFHxS)	NH-P
Perfluoroheptanoic acid (PFHpA)	NH-P
Perfluorooctanoic acid (PFOA)	NH-P
Perfluorooctanesulfonic acid (PFOS)	NH-P
6:2 Fluorotelomersulfonic acid (6:2FTS A)	NH-P
Perfluorononanoic acid (PFNA)	NH-P
Perfluorodecanoic acid (PFDA)	NH-P
N-EtFOSAA	NH-P
8:2 Fluorotelomersulfonic acid (8:2FTS A)	NH-P
Perfluoroundecanoic acid (PFUnA)	NH-P
N-MeFOSAA	NH-P
Perfluorododecanoic acid (PFDoA)	NH-P
Perfluorotridecanoic acid (PFTrDA)	NH-P
Perfluorotetradecanoic acid (PFTA)	NH-P
SOP-466 PFAS in Soil	
Perfluorobutanoic acid (PFBA)	NH-P
Perfluorobutanesulfonic acid (PFBS)	NH-P
Perfluoropentanoic acid (PFPeA)	NH-P
Perfluorohexanoic acid (PFHxA)	NH-P
Perfluorohexanesulfonic acid (PFHxS)	NH-P
Perfluoroheptanoic acid (PFHpA)	NH-P
Perfluorooctanoic acid (PFOA)	NH-P
Perfluorooctanesulfonic acid (PFOS)	NH-P
Perfluorononanoic acid (PFNA)	NH-P
SW-846 8270D-E in Water	
1,4-Dioxane	NY

 $The \ CON-TEST \ Environmental \ Laboratory \ operates \ under \ the \ following \ certifications \ and \ accreditations:$

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2017	100033	03/1/2022
MA	Massachusetts DEP	M-MA100	06/30/2020
CT	Connecticut Department of Publilc Health	PH-0567	09/30/2021
NY	New York State Department of Health	10899 NELAP	04/1/2021
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2021
RI	Rhode Island Department of Health	LAO00112	12/30/2020
NC	North Carolina Div. of Water Quality	652	12/31/2020
NJ	New Jersey DEP	MA007 NELAP	06/30/2020
FL	Florida Department of Health	E871027 NELAP	06/30/2020
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2021
ME	State of Maine	2011028	06/9/2021
VA	Commonwealth of Virginia	460217	12/14/2020
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2020
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2020
NC-DW	North Carolina Department of Health	25703	07/31/2020
PA	Commonwealth of Pennsylvania DEP	68-05812	06/30/2020

20E0516

Doc # 381 Rev 2_06262019

http://www.contestlabs.com

*Contest is not responsible for missing samples from prepacked Glassware in freezer? Y / N Prepackaged Cooler? Y / N Disclaimer: Con-Test Labs is not responsible for any omitted information on the Chain of Custody. Th Glassware in the fridge? Chain of Custody is a legal document that must be complete and accurate and is used to determine wh analyses the laboratory will perform. Any missing information is not the laboratory's responsibility. Co fest values your partnership on each project and will try to assist with missing information, but will not B = Sodium Bisulfate X = Sodium Hydroxide T = Sodium ' Matrix Codes: GW = Ground Water WW = Waste Water ² Preservation Codes: Total Number Of: DW = Drinking Water A = Air S = Soil SL = Studge SOL = Sotid O = Other (please Thiosulfate O = Other (please PLASTIC 12 Non Soxhle GLASS 6 S = Sulfuric Acid PCB ONLY M = Methanol N = Nitric Acid Saxhlet coolers Preservation Code SACTERIA ENCORE VIALS_ L= Iced H= HCL possible sample concentration within the Conc Code column above: H · High; M · Medium; L · Low; C · Clean; U · Please use the following codes to indicate NELAC and AlHA-LAP, LLC Accredited Chromatogram AIHA-LAP, LLC held accountable. ANALYSIS REQUESTED Other 2A79 10 A1 MCP Certification Form Reguned MA MCP Required CT RCP Require MA State DW Required 39 Spruce Street East Longmeadow, MA 01028 ENCORE BACTERIA include MDL in report for All PFAS availyses Field Filtered Field Filtered Lab to Filter Lab to Filter GLASS PLASTIC School MWRA MBTA juranezehnrsteymitten, com need to meet 5-1/aw-1 standards CHAIN OF CUSTOBY RECORD VIALS X 0 0 0 0 Conc Code 줟 Municipality Brownfield ^fMatrix Code 35 Due Date: 3 \mathcal{N} 3 35 3 7 OKAA 10-Day 3-Day 4-Day 68439 (289-B COMP/GRAB LPAR. CLP Like Data Pkg Required GRAB GRAPS 5113/22 GRAB GRAB 5113120 GRAB ΠX -S/1-MG PFAS 10-Day (std)][__ 5/13/20 Government Ending Date/Time 5/10/120 11 5 Ce Email To: Federal Fax To #: Format: Other: Client Comments: 1-Day 2-Day City -Day Project Entity 3/13/20 Beginning Date/Time Address:40 POINTE LOASANDWICH, MA OZSE3 BRENSTABLE ALLEGET Date/Time: 1700 12351 Email; info@contestlabs.com Date / Time: S/14/8,020 Date/Time: S/14/3050 Project Location: BARNSTABLE AIRPORT HOPSIEN INITIEIN Client Sample ID / Description Phone: 413-525-2332 #~-D Cold **≦** Date/Time: Jate/Time: Date/Time: Fax: 413-525-6405 ક 2 9 MASSA クーる工 ローろは () o 9 130 -3H 130 Project Manager: R.J. M.C.A. PATHY 4/1 AIS Invoice Recipient: りなくみい 20 9 3 508-833 Con-Test Quote Name/Number CON-test Retinquished by: (signature) Received by: (signature) Received by: (signature) ampled By: HW ed by (signature Work Order# Con-Test Relinquished by: Project Number: comments: Page 31 of 32

Table of Contents

I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples_____

Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False
Statement will be brought to the attention of the Client - State True or False

Received By	orsley Witten		Date	5/14/2	70	Time	V700	
How were the sam	nples In Cooler		No Cooler_		On Ice	<u> </u>	No Ice	
received?	Direct from Samp	oling	·		Ambient		Melted Ice	
More comples wi	·	By Gun #	2		Actual Tem	ip - 3.8		
Were samples win Temperature? 2-6		By Blank #			Actual Tem	ID -		
•	ody Seal Intact?	nla			s Tampered		volu	
	Relinquished?	- F. IV	•	•	ree With Sa		7	
	ken/leaking/loose caps	on any sam	-	F		-		
Is COC in ink/ Leg	-			noles receiv	ved within h	olding time?	7	
Did COC include		T	Analysis	T		er Name	T	
pertinent Informat		- 	ID's	7	•	Dates/Times	1	
•	s filled out and legible?	T		**************************************		-		
Are there Lab to Fi	_	<u> </u>	•	Who was	s notified?			
Are there Rushes?		F	•	Who was	s notified?			
Are there Short Ho		F	•	Who was	s notified?			
Is there enough Vo		T	•					
_	e where applicable?	17/0		MS/MSD?	t			the state of
Proper Media/Cont	To provide the contract the second of the contract of the second of the	T	•	Is splitting	samples red	quired?	F	n in saidh a deil N
Were trip blanks re		F	•	On COC?	<u> </u>	en e		
Do all samples hav			Acid	n la	na jaran	- Base .	nla	
Vials #	Containers:	#			#			#
Unp-	1 Liter Amb.	(a	1 Liter I	Plastic		16 oz	Amb.	
HCL-	500 mL Amb.		500 mL			8oz Am		
Meoh-	250 mL Amb.		250 mL		12	4oz Am		
D	Flashpoint		Col./Ba			2oz Am		
Bisulfate-		'	Other F	Plastic		Enc	core	
DI-	Other Glass					····		
DI- Thiosulfate-	SOC Kit		Plastic	c Bag		Frozen:		
DI- Thiosulfate-				c Bag		····		
DI- Thiosulfate-	SOC Kit	acata	Plastic	c Bag ock		····		
DI- Thiosulfate- Sulfuric- Vials #	SOC Kit Perchlorate Gontainers:	#	Plastic Ziple Unused M	c Bag ock Media	#	Frozen:		#
DI- Thiosulfate- Sulfuric-	SOC Kit Perchlorate	#	Plastic Ziplo Unused M	c Bag ock Media Plastic	#	Frozen:		*
DI- Thiosulfate- Sulfuric- Vials Unp- HCL-	SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb.	#	Plastic Ziple Unused M 1 Liter I 500 mL	c Bag ock Media Plastic Plastic	#	Frozen: 16 oz 8oz Am	b/Clear	#
DI- Thiosulfate- Sulfuric- Vials Unp- HCL- Meoh-	SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb.	#	Plastic Ziple Unused I 1 Liter I 500 mL 250 mL	c Bag ock Media Plastic Plastic Plastic Plastic	#	Frozen: 16 oz 8oz Am 4oz Am	b/Clear b/Clear	#
DI- Thiosulfate- Sulfuric- Vials Unp- HCL- Meoh- Bisulfate-	SOC Kit Perchlorate Gontainers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria	#	Plastic Ziple Unused M 1 Liter I 500 mL 250 mL Flash	c Bag ock Media Plastic Plastic Plastic Plastic	#	Frozen: 16 oz 8oz Am 4oz Am 2oz Am	b/Clear b/Clear b/Clear	*
DI- Thiosulfate- Sulfuric- Vials Unp- HCL- Meoh- Bisulfate- DI-	SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic		Plastic Ziple Unused M 1 Liter 500 mL 250 mL Flash Other	c Bag ock Media Plastic Plastic Plastic Plastic point Glass	#	16 oz 8oz Am 4oz Am 2oz Am	b/Clear b/Clear	*
DI- Thiosulfate- Sulfuric- Vials # Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate-	SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit	#	Plastic Ziple Unused M 1 Liter I 500 mL 250 mL Flash Other Plastic	c Bag ock Media Plastic Plastic Plastic Plastic Glass c Bag	***	Frozen: 16 oz 8oz Am 4oz Am 2oz Am	b/Clear b/Clear b/Clear	***
DI- Thiosulfate- Sulfuric- Vials Unp- HCL- Meoh- Bisulfate- DI-	SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic	#	Plastic Ziple Unused M 1 Liter 500 mL 250 mL Flash Other	c Bag ock Media Plastic Plastic Plastic Plastic Glass c Bag		16 oz 8oz Am 4oz Am 2oz Am	b/Clear b/Clear b/Clear	#

June 10, 2020

Bryan Massa Horsley Witten Group 90 Route 6A Unit #1 Sandwich, MA 02563

Project Location: Barnstable Airport

Client Job Number: Project Number: 19128

Laboratory Work Order Number: 20E1111

M M Contry

Enclosed are results of analyses for samples received by the laboratory on May 27, 2020. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Raymond J. McCarthy Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	5
20E1111-01	5
Sample Preparation Information	6
QC Data	7
Semivolatile Organic Compounds by - LC/MS-MS	7
B259212	7
Flag/Qualifier Summary	8
Certifications	9
Chain of Custody/Sample Receipt	10

Horsley Witten Group 90 Route 6A Unit #1 Sandwich, MA 02563 ATTN: Bryan Massa

n

PURCHASE ORDER NUMBER:

REPORT DATE: 6/10/2020

PROJECT NUMBER: 19128

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 20E1111

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Barnstable Airport

FIELD SAMPLE # LAB ID: MATRIX SAMPLE DESCRIPTION TEST SUB LAB

HW-K 20E1111-01 Ground Water SOP 434-PFAAS

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

SOP 434-PFAAS

Qualifications:

PF-01

Surrogate recovery is outside of control limits. Sample not re-extracted past holding time per method.

Analyte & Samples(s) Qualified:

13C-PFDA 20E1111-01[HW-K] d5-NEtFOSAA 20E1111-01[HW-K]

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the

best of my knowledge and belief, accurate and complete.

Lua Watslengton

Lisa A. Worthington
Technical Representative

Work Order: 20E1111

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Barnstable Airport Sample Description:

Date Received: 5/27/2020

Field Sample #: HW-K

Sampled: 5/21/2020 10:07

Sample ID: 20E1111-01
Sample Matrix: Ground Water

Semivolatile Organic Compounds by - LC/MS-MS

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	3.2	2.0	0.64	ng/L	1		SOP 434-PFAAS	6/3/20	6/10/20 0:54	JFC
Perfluorobutanesulfonic acid (PFBS)	ND	2.0	0.50	ng/L	1	U	SOP 434-PFAAS	6/3/20	6/10/20 0:54	JFC
Perfluoropentanoic acid (PFPeA)	10	2.0	0.42	ng/L	1		SOP 434-PFAAS	6/3/20	6/10/20 0:54	JFC
Perfluorohexanoic acid (PFHxA)	5.8	2.0	0.51	ng/L	1		SOP 434-PFAAS	6/3/20	6/10/20 0:54	JFC
Perfluorohexanesulfonic acid (PFHxS)	1.0	2.0	0.77	ng/L	1	J	SOP 434-PFAAS	6/3/20	6/10/20 0:54	JFC
Perfluoroheptanoic acid (PFHpA)	2.8	2.0	0.53	ng/L	1		SOP 434-PFAAS	6/3/20	6/10/20 0:54	JFC
Perfluoroheptanesulfonic acid (PFHpS)	ND	2.0	1.0	ng/L	1	U	SOP 434-PFAAS	6/3/20	6/10/20 0:54	JFC
Perfluorooctanoic acid (PFOA)	1.9	2.0	0.71	ng/L	1	J	SOP 434-PFAAS	6/3/20	6/10/20 0:54	JFC
Perfluorooctanesulfonic acid (PFOS)	1.6	2.0	0.68	ng/L	1	J	SOP 434-PFAAS	6/3/20	6/10/20 0:54	JFC
Perfluorooctanesulfonamide (FOSA)	ND	2.0	0.83	ng/L	1	U	SOP 434-PFAAS	6/3/20	6/10/20 0:54	JFC
6:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	2.0	0.39	ng/L	1	U	SOP 434-PFAAS	6/3/20	6/10/20 0:54	JFC
Perfluorononanoic acid (PFNA)	1.2	2.0	0.63	ng/L	1	J	SOP 434-PFAAS	6/3/20	6/10/20 0:54	JFC
Perfluorodecanoic acid (PFDA)	ND	2.0	0.62	ng/L	1	U	SOP 434-PFAAS	6/3/20	6/10/20 0:54	JFC
Perfluorodecanesulfonic acid (PFDS)	ND	2.0	0.51	ng/L	1	U	SOP 434-PFAAS	6/3/20	6/10/20 0:54	JFC
N-EtFOSAA	ND	2.0	0.70	ng/L	1	U	SOP 434-PFAAS	6/3/20	6/10/20 0:54	JFC
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	2.0	1.1	ng/L	1	U	SOP 434-PFAAS	6/3/20	6/10/20 0:54	JFC
Perfluoroundecanoic acid (PFUnA)	ND	2.0	0.49	ng/L	1	U	SOP 434-PFAAS	6/3/20	6/10/20 0:54	JFC
N-MeFOSAA	ND	2.0	0.62	ng/L	1	U	SOP 434-PFAAS	6/3/20	6/10/20 0:54	JFC
Perfluorododecanoic acid (PFDoA)	ND	2.0	0.50	ng/L	1	U	SOP 434-PFAAS	6/3/20	6/10/20 0:54	JFC
Perfluorotridecanoic acid (PFTrDA)	ND	2.0	0.67	ng/L	1	U	SOP 434-PFAAS	6/3/20	6/10/20 0:54	JFC
Perfluorotetradecanoic acid (PFTA)	ND	2.0	0.50	ng/L	1	U Flog/Ouel	SOP 434-PFAAS	6/3/20	6/10/20 0:54	JFC

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
13C-PFHxA	98.2	70-130		6/10/20 0:54
13C-PFDA	48.5 *	70-130	PF-01	6/10/20 0:54
d5-NEtFOSAA	35.0 *	70-130	PF-01	6/10/20 0:54

Sample Extraction Data

Prep Method: SOP 434-PFAAS Analytical Method: SOP 434-PFAAS

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20E1111-01 [HW-K]	B259212	250	1.00	06/03/20

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B259212 - SOP 434-PFAAS										
Blank (B259212-BLK1)				Prepared: 06	5/03/20 Analy	yzed: 06/10/	20			
Perfluorobutanoic acid (PFBA)	ND	2.0	ng/L							U
erfluorobutanesulfonic acid (PFBS)	ND	2.0	ng/L							U
erfluoropentanoic acid (PFPeA)	ND	2.0	ng/L							U
erfluorohexanoic acid (PFHxA)	ND	2.0	ng/L							U
erfluorohexanesulfonic acid (PFHxS)	ND	2.0	ng/L							U
erfluoroheptanoic acid (PFHpA)	ND	2.0	ng/L							U
erfluoroheptanesulfonic acid (PFHpS)	ND	2.0	ng/L							U
erfluorooctanoic acid (PFOA)	ND	2.0	ng/L							U
erfluorooctanesulfonic acid (PFOS)	ND	2.0	ng/L							U
erfluorooctanesulfonamide (FOSA)	ND	2.0	ng/L							U
2 Fluorotelomersulfonic acid (6:2FTS A)	ND	2.0	ng/L							U
erfluorononanoic acid (PFNA)	ND	2.0	ng/L							U
erfluorodecanoic acid (PFDA)	ND	2.0	ng/L							U
erfluorodecanesulfonic acid (PFDS)	ND	2.0	ng/L							U
-EtFOSAA	ND	2.0	ng/L							U
2 Fluorotelomersulfonic acid (8:2FTS A)	ND	2.0	ng/L							U
erfluoroundecanoic acid (PFUnA)	ND	2.0	ng/L							U
-MeFOSAA	ND	2.0	ng/L							U
erfluorododecanoic acid (PFDoA)	ND	2.0	ng/L							U
erfluorotridecanoic acid (PFTrDA)	ND	2.0	ng/L							U
erfluorotetradecanoic acid (PFTA)	ND	2.0	ng/L							U
urrogate: 13C-PFHxA	42.6		ng/L	40.0		106	70-130			
arrogate: 13C-PFDA	36.3		ng/L	40.0		90.8	70-130			
urrogate: d5-NEtFOSAA	163		ng/L	160		102	70-130			
CS (B259212-BS1)				Prepared: 06	5/03/20 Analy	yzed: 06/10/2	20			
erfluorobutanoic acid (PFBA)	2.36	2.0	ng/L	2.00		118	70-130			
erfluorobutanesulfonic acid (PFBS)	1.90	2.0	ng/L	1.77		107	70-130			J
erfluoropentanoic acid (PFPeA)	2.37	2.0	ng/L	2.00		119	70-130			
erfluorohexanoic acid (PFHxA)	2.40	2.0	ng/L	2.00		120	70-130			
erfluorohexanesulfonic acid (PFHxS)	2.07	2.0	ng/L	1.82		114	70-130			
erfluoroheptanoic acid (PFHpA)	2.39	2.0	ng/L	2.00		119	70-130			
erfluoroheptanesulfonic acid (PFHpS)	1.48	2.0	ng/L	1.90		77.8	50-150			J
erfluorooctanoic acid (PFOA)	2.52	2.0	ng/L	2.00		126	70-130			
erfluorooctanesulfonic acid (PFOS)	2.07	2.0	ng/L	1.85		112	70-130			
erfluorooctanesulfonamide (FOSA)	2.60	2.0	ng/L	2.00		130	50-150			
2 Fluorotelomersulfonic acid (6:2FTS A)	1.74	2.0	ng/L	2.00		86.9	70-130			J
erfluorononanoic acid (PFNA)	2.22	2.0	ng/L	2.00		111	70-130			
erfluorodecanoic acid (PFDA)	2.43	2.0	ng/L	2.00		121	70-130			
erfluorodecanesulfonic acid (PFDS)	1.73	2.0	ng/L	1.93		89.9	70-130			J
-EtFOSAA	2.16	2.0	ng/L	2.00		108	70-130			
2 Fluorotelomersulfonic acid (8:2FTS A)	1.75	2.0	ng/L	1.92		91.1	50-150			J
erfluoroundecanoic acid (PFUnA)	2.36	2.0	ng/L	2.00		118	70-130			
-MeFOSAA	1.73	2.0	ng/L	2.00		86.6	70-130			J
erfluorododecanoic acid (PFDoA)	1.65	2.0	ng/L	2.00		82.6	70-130			J
erfluorotridecanoic acid (PFTrDA)	1.51	2.0	ng/L	2.00		75.6	70-130			J
erfluorotetradecanoic acid (PFTA)	1.70	2.0	ng/L	2.00		85.1	70-130			J
ırrogate: 13C-PFHxA	46.4		ng/L	40.0		116	70-130			
urrogate: 13C-PFDA	41.4		ng/L	40.0		103	70-130			
Surrogate: d5-NEtFOSAA	187		ng/L	160		117	70-130			

U

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
J	Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).
PF-01	Surrogate recovery is outside of control limits. Sample not re-extracted past holding time per method.

Analyte included in the analysis, but not detected

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	
SOP 434-PFAAS in Water		
Perfluorobutanoic acid (PFBA)	NH-P	
Perfluorobutanesulfonic acid (PFBS)	NH-P	
Perfluoropentanoic acid (PFPeA)	NH-P	
Perfluorohexanoic acid (PFHxA)	NH-P	
Perfluorohexanesulfonic acid (PFHxS)	NH-P	
Perfluoroheptanoic acid (PFHpA)	NH-P	
Perfluorooctanoic acid (PFOA)	NH-P	
Perfluorooctanesulfonic acid (PFOS)	NH-P	
6:2 Fluorotelomersulfonic acid (6:2FTS A)	NH-P	
Perfluorononanoic acid (PFNA)	NH-P	
Perfluorodecanoic acid (PFDA)	NH-P	
N-EtFOSAA	NH-P	
8:2 Fluorotelomersulfonic acid (8:2FTS A)	NH-P	
Perfluoroundecanoic acid (PFUnA)	NH-P	
N-MeFOSAA	NH-P	
Perfluorododecanoic acid (PFDoA)	NH-P	
Perfluorotridecanoic acid (PFTrDA)	NH-P	
Perfluorotetradecanoic acid (PFTA)	NH-P	

 $The \ CON-TEST \ Environmental \ Laboratory \ operates \ under \ the \ following \ certifications \ and \ accreditations:$

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2017	100033	03/1/2022
MA	Massachusetts DEP	M-MA100	06/30/2020
CT	Connecticut Department of Publilc Health	PH-0567	09/30/2021
NY	New York State Department of Health	10899 NELAP	04/1/2021
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2021
RI	Rhode Island Department of Health	LAO00112	12/30/2020
NC	North Carolina Div. of Water Quality	652	12/31/2020
NJ	New Jersey DEP	MA007 NELAP	06/30/2020
FL	Florida Department of Health	E871027 NELAP	06/30/2020
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2021
ME	State of Maine	2011028	06/9/2021
VA	Commonwealth of Virginia	460217	12/14/2020
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2020
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2020
NC-DW	North Carolina Department of Health	25703	07/31/2020
PA	Commonwealth of Pennsylvania DEP	68-05812	06/30/2020

CHAIN OF CUSTODY RECORD http://www.contestlabs.com DOEIIII Phone: 413-525-2332 CON-LEST

Doc # 381 Rev 2_06262019

Table of Contents "Contest is not responsible for... missing samples from prepacked Prepackaged Cooler? Y / N Glassware in freezer? Y / N Glassware in the fridge? Chain of Custody is a legal document that must be complete and accurate and is used to determine who Disclaimer: Con-Test Labs is not responsible for any omitted information on the Chain of Custody. The analyses the laboratory will perform. Any missing information is not the laboratory's responsibility. Co Test values your partnership on each project and will try to assist with missing information, but will not B = Sodium Bisulfate X = Sodium Hydroxide T = Sodium 1 Matrix Codes: GW = Ground Water WW = Waste Water DW = Drinking Water 2 Preservation Codes: Total Number Of: A = Air S = Soil SL = Studge SOL = Solid O = Other (please define) I = iced H = HCL M = Methanol N = Nitric Acid S = Sulfuric Acid 0 = Other (please Non Soxhlet PCB ONLY Soxhlet Preservation Code Page 1 of BACTERIA GLASS PLASTIC ENCORE VIALS Thiosulfate possible sample concentration within the Conc H · High; M · Medium; L · Low; C · Clean; U · Please use the following codes to indicate NELAC and AMA-LAP, LLC Accredited Chromatogram AIHA-LAP,LLC Code column above: ANALYSIS REQUESTED held accountable. Other MCP Certification Form Rayuired MA MCP Required MA State DW Required SATA CT RCP Requ 39 Spruce Street East Longmeadow, MA 01028 ENCORE X Matrix Conc Code VIALS GLASS PLASTIC BACTERIA EXCEL Field Filtered Field Filtered Lab to Filter Lab to Fitter joanez@horsleywithen.com School MWRA MBTA 0 0 0 0 5 PDF Municipality Due Date: Brownfield # QISMd 10-Day 3-Day 4-Day COMP/GRAB 5/21/2 5/21/22 CALARS CLP Like Data Pkg Required: PFAS 10-Day (std) 1-1245 Ending Date/Time Government Email To: Fax To# Federal Format: Other: 2-Day 7-Day -Day Client Comments: City Project Entity Beginning Date/Time RUMIE (OP, SANDWILH, MACLEUS HORSLEY WITTEN GROWP BARNSTABLE AIRPORT Date/Time: Email: info@contestlabs.com 4 mil Pate/Time: 30 Date/Time: 1347 137-3016 Client Sample ID / Description 5/21/20 Fax: 413-525-6405 ate/Time: Date/Time: Date/fime: Date/Time: No. MASSA 0022 Project Manager: RJ MCCARTHY メースエ Invoice Recipient: 9 RYAN Con-Test Quote Name/Number: nquished by: (signature Received by: (signature) ignature) Sampled By: HL Work Order# Con Test Project Location: ceived by: (sign Project Number: 24 amments: Address: 40 ecelved by: etinguishe Phone: Page 10 of 11

I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples_____

Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False

Client Hors	<u>e</u> ų							
Received By	20 L		Date	512712) (C)	Time	1800	
How were the samples	In Cooler	7	No Cooler		On Ice	1	No Ice	
received?	Direct from Samp	oling	•		Ambient		Melted Ice	
Maran annual an coith in		By Gun #	5		Actual Tem	p - 4.0		
Were samples within Temperature? 2-6°C		By Blank #			Actual Tem			•
Was Custody So	l eal Intact?	nla	We		Tampered		na	•
Was COC Relin		17,69		•	ee With Sa		1/10	
Are there broken/l	=	on any sam		F				•
Is COC in ink/ Legible?	•	or arry carri		noles receiv	ed within h	olding time?	7	
Did COC include all	Client	T	Analysis	4		er Name	+	•
pertinent Information?	Project	T	ID's	7	•	Dates/Times	T	
Are Sample labels filled	d out and legible?		•			•		
Are there Lab to Filters?		F		Who was	notified?			
Are there Rushes?		F		Who was	notified?			
Are there Short Holds?		F		Who was	notified?			
Is there enough Volume	?	T						
Is there Headspace who	ere applicable?	na		MS/MSD?	F	4.3a		
Proper Media/Container	s Used?	Ť		Is splitting s	samples rec	uired?	F	:.
Were trip blanks receive	ed?	F		On COC?	F		ſ	
Do all samples have the	proper pH?	termonal hermatika entropa attakk oleh albania ili.	Acid	nla		Base	nu	
Vials #	Containers:	#			#			#
Unp-	1 Liter Amb.		1 Liter	Plastic		16 oz	Amb.	
HCL-	500 mL Amb.		500 mL			8oz Am	b/Clear	
Meoh-	250 mL Amb.		250 mL		<u> </u>	4oz Am		
Bisulfate-	Flashpoint		Col./Ba			2oz Am		
DI-	Other Glass		Other I			Enc	ore	
Thiosulfate-	SOC Kit		Plastic			Frozen:		
Sulfuric-	Perchlorate		Zipl	ock [
			Unused I	Media				
Vials #	Containers:	#	4 1 11	D	#	10	A . I	#
Unp-	1 Liter Amb.		1 Liter		·	16 oz		
HCL- Meoh-	500 mL Amb. 250 mL Amb.		250 mL		······································	8oz Am 4oz Am	*****	
Bisulfate-	Col./Bacteria		Flash			2oz Am		
DI-	Other Plastic		Other			Enc		
Thiosulfate-	SOC Kit		Plastic			Frozen:		
Sulfuric-	Perchlorate		Ziple					
Comments:	<u> </u>							

ANALYTICAL REPORT

Lab Number: L2032047

Client: Horseley & Witten, Inc.

Sextant Hill Office Park

90 Route 6A

Sandwich, MA 02563

ATTN: Brian Massa
Phone: (508) 833-6600

Project Name: PA LANDERS/BMA/RAVEN

Project Number: 14105 Report Date: 09/23/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name: PA LANDERS/BMA/RAVEN

Project Number: 14105

Lab Number:

L2032047

Report Date: 09/23/20

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2032047-01	LOAM STOCKPILE	SOIL	FOREST DALE/HYANNIS	08/07/20 08:30	08/07/20
L2032047-02	SAND STOCKPILE	SOIL	FOREST DALE/HYANNIS	08/07/20 09:00	08/07/20
L2032047-03	GEOMEMBRANE	SOLID	FOREST DALE/HYANNIS	08/07/20 11:35	08/07/20

Project Name: PA LANDERS/BMA/RAVEN Lab Number: L2032047

Project Number: 14105 Report Date: 09/23/20

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
Α	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	N/A
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A res	A response to questions G, H and I is required for "Presumptive Certainty" status						
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	YES					
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	YES					
ı	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	YES					

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name:PA LANDERS/BMA/RAVENLab Number:L2032047Project Number:14105Report Date:09/23/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: PA LANDERS/BMA/RAVEN Lab Number: L2032047
Project Number: 14105 Report Date: 09/23/20

Case Narrative (continued)

Report Revision

September 23, 2020: All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

MCP Related Narratives

Report Submission

All MCP required questions were answered with affirmative responses; therefore, there are no relevant protocol-specific QC and/or performance standard non-conformances to report.

Non-MCP Related Narratives

Perfluorinated Alkyl Acids by Isotope Dilution

L2032047-01 and -02: Extracted Internal Standard recoveries were outside the acceptance criteria for individual analytes. Please refer to the surrogate section of the report for details.

WG1397311-1, WG1397311-2, and WG1397311-3: Extracted Internal Standard recoveries were outside the acceptance criteria for individual analytes. Please refer to the surrogate section of the report for details. The WG1397311-2 LCS recovery, associated with L2032047-01 and -02, is above the acceptance criteria for perfluorotetradecanoic acid (pfta) (135%); however, the associated samples are non-detect to the RL for this target analyte. The results of the original analysis are reported.

The WG1397311-3 LCSD recoveries, associated with L2032047-01 and -02, are above the acceptance criteria for perfluorotridecanoic acid (pftrda) (161%) and perfluorotetradecanoic acid (pfta) (142%); however, the associated samples are non-detect to the RL for these target analytes. The results of the original analysis are reported.

SPLP Perfluorinated Alkyl Acids by Isotope Dilution

WG1398130-5: This blank represents the SPLP tumbling blank associated with L2032047-03.

The WG1398130-5 Method Blank, associated with L2032047-03, has a concentration above the reporting limit for PFBA. Since the sample(s) were non-detect to the RL for this target analyte, no further actions were taken.

Serial_No:09232019:14

Project Name: PA LANDERS/BMA/RAVEN Lab Number: L2032047
Project Number: 14105 Report Date: 09/23/20

Case Narrative (continued)

The results of the original analysis are reported.

The WG1398130-2 LCS recoveries, associated with L2032047-03, are above the acceptance criteria for perfluorododecanoic acid (pfdoa) (162%) and perfluorotridecanoic acid (pftrda) (160%); however, the associated samples are non-detect to the RL for these target analytes. The results of the original analysis are reported.

The WG1398130-3 LCSD recoveries, associated with L2032047-03, are above the acceptance criteria for perfluorononanesulfonic acid (pfns) (160%), perfluorodecanesulfonic acid (pfds) (168%), perfluorododecanoic acid (pfdoa) (160%) and perfluorotridecanoic acid (pftrda) (160%); however, the associated samples are non-detect to the RL for these target analytes. The results of the original analysis are reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Lifani Morrissey-Tiffani Morrissey

Authorized Signature:

Title: Technical Director/Representative Date: 09/23/20

ALPHA

QC OUTLIER SUMMARY REPORT

Project Name: PA LANDERS/BMA/RAVEN Lab Number:

L2032047

Project Number: 14105

Report Date: 09/23/20

Method	Client ID (Native ID)	Lab ID	Parameter	QC Type	Recovery/RPI (%)	QC Limits (%)	Associated Samples	Data Quality Assessment
Perfluorinate	ed Alkyl Acids by Isotope Dilution - M	lansfield Lab						
LCMSMS-ID	Batch QC	WG1397311-2	Perfluorotetradecanoic Acid (PFTA)	LCS	135	69-133	01-02	potential high bias
LCMSMS-ID	Batch QC	WG1397311-3	Perfluorotridecanoic Acid (PFTrDA)	LCSD	161	66-139	01-02	potential high bias
LCMSMS-ID	Batch QC	WG1397311-3	Perfluorotetradecanoic Acid (PFTA)	LCSD	142	69-133	01-02	potential high bias
SPLP Perflu	orinated Alkyl Acids by Isotope Dilut	ion & EPA 1312 - Manst	field Lab					
LCMSMS-ID	Batch QC	WG1398130-2	Perfluorododecanoic Acid (PFDoA)	LCS	162	67-153	03	potential high bias
LCMSMS-ID	Batch QC	WG1398130-2	Perfluorotridecanoic Acid (PFTrDA)	LCS	160	48-158	03	potential high bias
LCMSMS-ID	Batch QC	WG1398130-3	Perfluorononanesulfonic Acid (PFNS)	LCSD	160	48-150	03	potential high bias
LCMSMS-ID	Batch QC	WG1398130-3	Perfluorodecanesulfonic Acid (PFDS)	LCSD	168	38-156	03	potential high bias
LCMSMS-ID	Batch QC	WG1398130-3	Perfluorododecanoic Acid (PFDoA)	LCSD	160	67-153	03	potential high bias
LCMSMS-ID	Batch QC	WG1398130-3	Perfluorotridecanoic Acid (PFTrDA)	LCSD	160	48-158	03	potential high bias

ORGANICS

SEMIVOLATILES

Serial_No:09232019:14

Project Name: PA LANDERS/BMA/RAVEN Lab Number: L2032047

Project Number: 14105 Report Date: 09/23/20

SAMPLE RESULTS

Lab ID: L2032047-01 Date Collected: 08/07/20 08:30

Client ID: LOAM STOCKPILE Date Received: 08/07/20 Sample Location: FOREST DALE/HYANNIS Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: ALPHA 23528

Analytical Method: 134,LCMSMS-ID Extraction Date: 08/10/20 17:40
Analytical Date: 08/12/20 06:42

Analyst: SG Percent Solids: 91%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab					
Perfluorobutanoic Acid (PFBA)	ND		ng/g	1.05	0.024	1	
Perfluoropentanoic Acid (PFPeA)	ND		ng/g	1.05	0.048	1	
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/g	1.05	0.041	1	
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/g	1.05	0.068	1	
Perfluorohexanoic Acid (PFHxA)	ND		ng/g	1.05	0.055	1	
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/g	1.05	0.088	1	
Perfluoroheptanoic Acid (PFHpA)	ND		ng/g	1.05	0.047	1	
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/g	1.05	0.064	1	
Perfluorooctanoic Acid (PFOA)	0.103	J	ng/g	1.05	0.044	1	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/g	1.05	0.189	1	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/g	1.05	0.144	1	
Perfluorononanoic Acid (PFNA)	ND		ng/g	1.05	0.079	1	
Perfluorooctanesulfonic Acid (PFOS)	0.211	J	ng/g	1.05	0.137	1	
Perfluorodecanoic Acid (PFDA)	ND		ng/g	1.05	0.071	1	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/g	1.05	0.302	1	
Perfluorononanesulfonic Acid (PFNS)	ND		ng/g	1.05	0.314	1	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/g	1.05	0.212	1	
Perfluoroundecanoic Acid (PFUnA)	ND		ng/g	1.05	0.049	1	
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/g	1.05	0.161	1	
Perfluorooctanesulfonamide (FOSA)	ND		ng/g	1.05	0.103	1	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/g	1.05	0.089	1	
Perfluorododecanoic Acid (PFDoA)	ND		ng/g	1.05	0.074	1	
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/g	1.05	0.215	1	
Perfluorotetradecanoic Acid (PFTA)	ND		ng/g	1.05	0.057	1	

Project Name: PA LANDERS/BMA/RAVEN Lab Number: L2032047

Project Number: 14105 Report Date: 09/23/20

SAMPLE RESULTS

Lab ID: L2032047-01 Date Collected: 08/07/20 08:30

Client ID: LOAM STOCKPILE Date Received: 08/07/20 Sample Location: FOREST DALE/HYANNIS Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	22	Q	60-153
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	27	Q	65-182
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	79		70-151
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	65		56-138
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	24	Q	61-147
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	27	Q	62-149
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	83		63-166
Perfluoro[13C8]Octanoic Acid (M8PFOA)	31	Q	62-152
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	66		32-182
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	31	Q	61-154
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	73		65-151
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	39	Q	65-150
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	82		25-186
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	34	Q	45-137
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	38	Q	64-158
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	4		1-125
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	52		42-136
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	52	Q	56-148
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	27		26-160

Project Name: PA LANDERS/BMA/RAVEN Lab Number: L2032047

Project Number: 14105 Report Date: 09/23/20

SAMPLE RESULTS

Lab ID: L2032047-02 Date Collected: 08/07/20 09:00

Client ID: SAND STOCKPILE Date Received: 08/07/20

Sample Location: FOREST DALE/HYANNIS Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: ALPHA 23528

Analytical Method: 134,LCMSMS-ID Extraction Date: 08/10/20 17:40
Analytical Date: 08/12/20 06:59

Analyst: SG Percent Solids: 98%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab					
Perfluorobutanoic Acid (PFBA)	ND		ng/g	0.905	0.021	1	
Perfluoropentanoic Acid (PFPeA)	ND		ng/g	0.905	0.042	1	
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/g	0.905	0.035	1	
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/g	0.905	0.058	1	
Perfluorohexanoic Acid (PFHxA)	ND		ng/g	0.905	0.048	1	
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/g	0.905	0.076	1	
Perfluoroheptanoic Acid (PFHpA)	ND		ng/g	0.905	0.041	1	
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/g	0.905	0.055	1	
Perfluorooctanoic Acid (PFOA)	ND		ng/g	0.905	0.038	1	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/g	0.905	0.162	1	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/g	0.905	0.124	1	
Perfluorononanoic Acid (PFNA)	ND		ng/g	0.905	0.068	1	
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/g	0.905	0.118	1	
Perfluorodecanoic Acid (PFDA)	ND		ng/g	0.905	0.061	1	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/g	0.905	0.260	1	
Perfluorononanesulfonic Acid (PFNS)	ND		ng/g	0.905	0.271	1	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/g	0.905	0.182	1	
Perfluoroundecanoic Acid (PFUnA)	ND		ng/g	0.905	0.042	1	
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/g	0.905	0.138	1	
Perfluorooctanesulfonamide (FOSA)	ND		ng/g	0.905	0.089	1	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/g	0.905	0.077	1	
Perfluorododecanoic Acid (PFDoA)	ND		ng/g	0.905	0.063	1	
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/g	0.905	0.185	1	
Perfluorotetradecanoic Acid (PFTA)	ND		ng/g	0.905	0.049	1	

Project Name: PA LANDERS/BMA/RAVEN Lab Number: L2032047

Project Number: 14105 Report Date: 09/23/20

SAMPLE RESULTS

Lab ID: L2032047-02 Date Collected: 08/07/20 09:00

Client ID: SAND STOCKPILE Date Received: 08/07/20 Sample Location: FOREST DALE/HYANNIS Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	77		60-153	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	84		65-182	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	84		70-151	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	63		56-138	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	76		61-147	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	77		62-149	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	86		63-166	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	75		62-152	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	66		32-182	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	64		61-154	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	78		65-151	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	68		65-150	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	70		25-186	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	57		45-137	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	53	Q	64-158	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	66		1-125	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	69		42-136	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	71		56-148	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	30		26-160	

Project Name: Lab Number: PA LANDERS/BMA/RAVEN L2032047

Report Date: **Project Number:** 14105 09/23/20

SAMPLE RESULTS

Lab ID: L2032047-03 Date Collected: 08/07/20 11:35

Date Received: Client ID: **GEOMEMBRANE** 08/07/20 Sample Location: FOREST DALE/HYANNIS Field Prep: Not Specified

Sample Depth:

Extraction Method: ALPHA 23528 Matrix: Solid

Extraction Date: 08/12/20 16:40 Analytical Method: 134,LCMSMS-ID Analytical Date:

Analyst: SG

TCLP/SPLP Ext. Date: 08/09/20 11:36

08/15/20 19:56

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
SPLP Perfluorinated Alkyl Acids by Isotope	e Dilution & El	PA 1312 - M	ansfield Lal)		
Perfluorobutanoic Acid (PFBA)	1.15	J	ng/l	1.75	0.358	1
Perfluoropentanoic Acid (PFPeA)	0.860	J	ng/l	1.75	0.347	1
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	1.75	0.209	1
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/l	1.75	0.396	1
Perfluorohexanoic Acid (PFHxA)	0.674	J	ng/l	1.75	0.288	1
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/l	1.75	0.215	1
Perfluoroheptanoic Acid (PFHpA)	0.368	J	ng/l	1.75	0.198	1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	1.75	0.330	1
Perfluorooctanoic Acid (PFOA)	0.316	J	ng/l	1.75	0.207	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	1.75	1.17	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.75	0.604	1
Perfluorononanoic Acid (PFNA)	ND		ng/l	1.75	0.274	1
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	1.75	0.442	1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.75	0.267	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.75	1.06	1
Perfluorononanesulfonic Acid (PFNS)	ND		ng/l	1.75	0.982	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.75	0.568	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.75	0.228	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.75	0.860	1
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.75	0.509	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.75	0.705	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.75	0.326	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.75	0.287	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.75	0.218	1

Project Name: PA LANDERS/BMA/RAVEN Lab Number: L2032047

Project Number: 14105 Report Date: 09/23/20

SAMPLE RESULTS

Lab ID: L2032047-03 Date Collected: 08/07/20 11:35

Client ID: GEOMEMBRANE Date Received: 08/07/20
Sample Location: FOREST DALE/HYANNIS Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

SPLP Perfluorinated Alkyl Acids by Isotope Dilution & EPA 1312 - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	71	2-156
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	62	16-173
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	77	31-159
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	59	1-313
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	59	21-145
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	68	30-139
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	80	47-153
Perfluoro[13C8]Octanoic Acid (M8PFOA)	69	36-149
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	71	1-244
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	65	34-146
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	81	42-146
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	72	38-144
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	74	7-170
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	62	1-181
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	82	40-144
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	33	1-87
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	72	23-146
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	66	24-161
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	40	33-143

Project Name: PA LANDERS/BMA/RAVEN Lab Number:

Project Number: 14105 Report Date: 09/23/20

Method Blank Analysis Batch Quality Control

Analytical Method: 134,LCMSMS-ID Extraction Method: ALPHA 23528
Analytical Date: 08/12/20 00:54 Extraction Date: 08/10/20 17:40

Analyst: SG

Parameter	Result	Qualifier	Units	RL	MD	L
Perfluorinated Alkyl Acids by Isotope	Dilution -	Mansfield I	Lab for	sample(s):	01-02 Bat	tch: WG1397311-1
Perfluorobutanoic Acid (PFBA)	ND		ng/g	1.00	0.0	23
Perfluoropentanoic Acid (PFPeA)	ND		ng/g	1.00	0.0	46
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/g	1.00	0.0	39
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	d ND		ng/g	1.00	0.0	65
Perfluorohexanoic Acid (PFHxA)	ND		ng/g	1.00	0.0	53
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/g	1.00	0.0	84
Perfluoroheptanoic Acid (PFHpA)	ND		ng/g	1.00	0.0	45
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/g	1.00	0.0	61
Perfluorooctanoic Acid (PFOA)	ND		ng/g	1.00	0.0	42
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/g	1.00	0.1	80
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/g	1.00	0.1	36
Perfluorononanoic Acid (PFNA)	ND		ng/g	1.00	0.0	75
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/g	1.00	0.1	30
Perfluorodecanoic Acid (PFDA)	ND		ng/g	1.00	0.0	67
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	d ND		ng/g	1.00	0.2	87
Perfluorononanesulfonic Acid (PFNS)	ND		ng/g	1.00	0.2	99
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	c ND		ng/g	1.00	0.2	02
Perfluoroundecanoic Acid (PFUnA)	ND		ng/g	1.00	0.0	47
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/g	1.00	0.1	53
Perfluorooctanesulfonamide (FOSA)	ND		ng/g	1.00	0.0	98
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/g	1.00	0.0	85
Perfluorododecanoic Acid (PFDoA)	ND		ng/g	1.00	0.0	70
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/g	1.00	0.2	04
Perfluorotetradecanoic Acid (PFTA)	ND		ng/g	1.00	0.0	54

Project Name: PA LANDERS/BMA/RAVEN Lab Number:

Project Number: 14105 Report Date: 09/23/20

Method Blank Analysis
Batch Quality Control

Analytical Method: 134,LCMSMS-ID Extraction Method: ALPHA 23528
Analytical Date: 08/12/20 00:54 Extraction Date: 08/10/20 17:40

Analyst: SG

Parameter Result Qualifier Units RL MDL

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab for sample(s): 01-02 Batch: WG1397311-1

Surrogate (Extracted Internal Standard)	%Recovery		Acceptance Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	79		60-153
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	89		65-182
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	82		70-151
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	53	Q	56-138
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	77		61-147
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	77		62-149
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	83		63-166
Perfluoro[13C8]Octanoic Acid (M8PFOA)	75		62-152
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	57		32-182
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	59	Q	61-154
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	81		65-151
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	68		65-150
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	61		25-186
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	144	Q	45-137
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	60	Q	64-158
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	49		1-125
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	146	Q	42-136
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	89		56-148
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	53		26-160

Lab Number:

Project Name: PA LANDERS/BMA/RAVEN

Project Number: 14105 Report Date: 09/23/20

Method Blank Analysis Batch Quality Control

Analytical Method: 134,LCMSMS-ID Extraction Method: ALPHA 23528
Analytical Date: 08/15/20 19:06 Extraction Date: 08/12/20 16:40

Analyst: SG TCLP/SPLP Extraction Date:

Parameter	Result	Qualifier	Units	RL	MDL		
SPLP Perfluorinated Alkyl Acids by I WG1398130-1	sotope Dilu	ıtion & EPA	1312	- Mansfield	Lab for sample(s):	03	Batch:
Perfluorobutanoic Acid (PFBA)	ND		ng/l	2.00	0.408		
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	2.00	0.396		
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	2.00	0.238		
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	d ND		ng/l	2.00	0.452		
Perfluorohexanoic Acid (PFHxA)	0.364	JF	ng/l	2.00	0.328		
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/l	2.00	0.245		
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	2.00	0.225		
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	2.00	0.376		
Perfluorooctanoic Acid (PFOA)	ND		ng/l	2.00	0.236		
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	2.00	1.33		
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	2.00	0.688		
Perfluorononanoic Acid (PFNA)	ND		ng/l	2.00	0.312		
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	2.00	0.504		
Perfluorodecanoic Acid (PFDA)	ND		ng/l	2.00	0.304		
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	d ND		ng/l	2.00	1.21		
Perfluorononanesulfonic Acid (PFNS)	ND		ng/l	2.00	1.12		
N-Methyl Perfluorooctanesulfonamidoaceti Acid (NMeFOSAA)	c ND		ng/l	2.00	0.648		
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	2.00	0.260		
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	2.00	0.980		
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	2.00	0.580		
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	2.00	0.804		
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	2.00	0.372		
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	2.00	0.327		
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	2.00	0.248		

Project Name: PA LANDERS/BMA/RAVEN Lab Number: L2032047

Project Number: 14105 Report Date: 09/23/20

Method Blank Analysis
Batch Quality Control

Analytical Method: 134,LCMSMS-ID Extraction Method: ALPHA 23528
Analytical Date: 08/15/20 19:06 Extraction Date: 08/12/20 16:40

Analyst: SG TCLP/SPLP Extraction Date:

Parameter Result Qualifier Units RL MDL

SPLP Perfluorinated Alkyl Acids by Isotope Dilution & EPA 1312 - Mansfield Lab for sample(s): 03 Batch: WG1398130-1

		Acceptance
Surrogate (Extracted Internal Standard)	%Recovery	Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	75	2-156
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	65	16-173
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	77	31-159
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	57	1-313
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	61	21-145
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	70	30-139
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	80	47-153
Perfluoro[13C8]Octanoic Acid (M8PFOA)	69	36-149
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	67	1-244
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	64	34-146
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	78	42-146
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	74	38-144
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	68	7-170
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	67	1-181
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	83	40-144
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	46	1-87
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	74	23-146
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	71	24-161
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	63	33-143

Lab Number:

Project Name: PA LANDERS/BMA/RAVEN

134,LCMSMS-ID

Project Number: 14105 Report Date: 09/23/20

Method Blank Analysis Batch Quality Control

Batch Quality Control

Analytical Date: 08/15/20 17:10 Analyst: SG

Analytical Method:

TCLP/SPLP Extraction Date: 08/09/20 11:36

Extraction Method: ALPHA 23528 Extraction Date: 08/12/20 16:40

L2032047

Parameter	Result	Qualifier	Units	RL	MDL		
SPLP Perfluorinated Alkyl Acids by I NG1398130-5	sotope Dilu	ition & EPA	A 1312 - N	/lansfield Lab	for sample(s):	03	Batch:
Perfluorobutanoic Acid (PFBA)	2.44		ng/l	1.80	0.368		
Perfluoropentanoic Acid (PFPeA)	1.72	J	ng/l	1.80	0.357		
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	1.80	0.215		
1H,1H,2H,2H-Perfluorohexanesulfonic Aci (4:2FTS)	d ND		ng/l	1.80	0.408		
Perfluorohexanoic Acid (PFHxA)	0.960	J	ng/l	1.80	0.296		
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/l	1.80	0.221		
Perfluoroheptanoic Acid (PFHpA)	0.628	J	ng/l	1.80	0.203		
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	1.80	0.339		
Perfluorooctanoic Acid (PFOA)	0.307	J	ng/l	1.80	0.213		
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	l ND		ng/l	1.80	1.20		
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.80	0.621		
Perfluorononanoic Acid (PFNA)	ND		ng/l	1.80	0.282		
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	1.80	0.455		
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.80	0.274		
1H,1H,2H,2H-Perfluorodecanesulfonic Aci (8:2FTS)	d ND		ng/l	1.80	1.09		
Perfluorononanesulfonic Acid (PFNS)	ND		ng/l	1.80	1.01		
N-Methyl Perfluorooctanesulfonamidoaceti Acid (NMeFOSAA)	c ND		ng/l	1.80	0.585		
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.80	0.235		
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.80	0.884		
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.80	0.523		
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.80	0.726		
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.80	0.336		
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.80	0.295		
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.80	0.224		

Project Name: PA LANDERS/BMA/RAVEN Lab Number: L2032047

Project Number: 14105 Report Date: 09/23/20

Method Blank Analysis
Batch Quality Control

Analytical Method: 134,LCMSMS-ID Extraction Method: ALPHA 23528
Analytical Date: 08/15/20 17:10 Extraction Date: 08/12/20 16:40

Analyst: SG

TCLP/SPLP Extraction Date: 08/09/20 11:36

Parameter Result Qualifier Units RL MDL

SPLP Perfluorinated Alkyl Acids by Isotope Dilution & EPA 1312 - Mansfield Lab for sample(s): 03 Batch: WG1398130-5

Surrogate (Extracted Internal Standard)	%Recovery	Acceptance Qualifier Criteria
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Perfluoro[13C4]Butanoic Acid (MPFBA)	58	2-156
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	53	16-173
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	72	31-159
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	46	1-313
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	50	21-145
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	58	30-139
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	75	47-153
Perfluoro[13C8]Octanoic Acid (M8PFOA)	58	36-149
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	55	1-244
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	55	34-146
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	73	42-146
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	66	38-144
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	55	7-170
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	63	1-181
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	75	40-144
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	7	1-87
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	57	23-146
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	68	24-161
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	63	33-143

Project Name: PA LANDERS/BMA/RAVEN

Project Number: 14105

Lab Number: L2032047

Report Date: 09/23/20

arameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
erfluorinated Alkyl Acids by Isotope Dilution	- Mansfield Lab	Associated sample(s): 01-02	Batch: WG1397311-2	WG1397311-3	
Perfluorobutanoic Acid (PFBA)	98	100	71-135	2	30
Perfluoropentanoic Acid (PFPeA)	96	98	69-132	2	30
Perfluorobutanesulfonic Acid (PFBS)	93	94	72-128	1	30
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	93	94	62-145	1	30
Perfluorohexanoic Acid (PFHxA)	103	107	70-132	4	30
Perfluoropentanesulfonic Acid (PFPeS)	98	99	73-123	1	30
Perfluoroheptanoic Acid (PFHpA)	105	110	71-131	5	30
Perfluorohexanesulfonic Acid (PFHxS)	95	95	67-130	0	30
Perfluorooctanoic Acid (PFOA)	95	102	69-133	7	30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	124	117	64-140	6	30
Perfluoroheptanesulfonic Acid (PFHpS)	105	123	70-132	16	30
Perfluorononanoic Acid (PFNA)	104	106	72-129	2	30
Perfluorooctanesulfonic Acid (PFOS)	93	102	68-136	9	30
Perfluorodecanoic Acid (PFDA)	108	108	69-133	0	30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	105	115	65-137	9	30
Perfluorononanesulfonic Acid (PFNS)	92	100	69-125	8	30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	104	106	63-144	2	30
Perfluoroundecanoic Acid (PFUnA)	87	105	64-136	19	30
Perfluorodecanesulfonic Acid (PFDS)	92	96	59-134	4	30
Perfluorooctanesulfonamide (FOSA)	99	104	67-137	5	30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	102	104	61-139	2	30
Perfluorododecanoic Acid (PFDoA)	116	132	69-135	13	30

Project Name: PA LANDERS/BMA/RAVEN

Project Number: 14105

Lab Number: L2032047

Report Date: 09/23/20

	LCS				%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Perfluorinated Alkyl Acids by Isotope Dilu	ution - Mansfield Lab	Associated sa	ample(s): 01-02	Batch:	WG1397311-2	WG1397311-3			
Perfluorotridecanoic Acid (PFTrDA)	126		161	Q	66-139	24		30	
Perfluorotetradecanoic Acid (PFTA)	135	Q	142	Q	69-133	5		30	

	LCS		LCSD		Acceptance
Surrogate (Extracted Internal Standard)	%Recovery	Qual	%Recovery	Qual	Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	79		72		60-153
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	88		80		65-182
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	84		74		70-151
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	57		52	Q	56-138
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	76		69		61-147
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	76		69		62-149
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	84		74		63-166
Perfluoro[13C8]Octanoic Acid (M8PFOA)	76		67		62-152
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	61		52		32-182
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	60	Q	56	Q	61-154
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	83		70		65-151
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	68		61	Q	65-150
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	71		69		25-186
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	129		107		45-137
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	60	Q	48	Q	64-158
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	31		9		1-125
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	133		110		42-136
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	91		70		56-148
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	52		45		26-160

Project Name: PA LANDERS/BMA/RAVEN

Project Number: 14105

Lab Number: L2032047

Report Date: 09/23/20

rameter	LCS %Recovery	Qual %	LCSD 6Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
LP Perfluorinated Alkyl Acids by Isotop	e Dilution & EPA 13	312 - Mansfield La	ab Associate	d sample(s):	03 Batch: \	WG1398130-2	WG1398130-3
Perfluorobutanoic Acid (PFBA)	145		142		67-148	2	30
Perfluoropentanoic Acid (PFPeA)	139		136		63-161	2	30
Perfluorobutanesulfonic Acid (PFBS)	141		139		65-157	1	30
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	140		131		37-219	7	30
Perfluorohexanoic Acid (PFHxA)	150		146		69-168	3	30
Perfluoropentanesulfonic Acid (PFPeS)	125		128		52-156	2	30
Perfluoroheptanoic Acid (PFHpA)	144		140		58-159	3	30
Perfluorohexanesulfonic Acid (PFHxS)	140		139		69-177	1	30
Perfluorooctanoic Acid (PFOA)	151		150		63-159	1	30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	158		156		49-187	1	30
Perfluoroheptanesulfonic Acid (PFHpS)	142		141		61-179	1	30
Perfluorononanoic Acid (PFNA)	144		143		68-171	1	30
Perfluorooctanesulfonic Acid (PFOS)	138		142		52-151	3	30
Perfluorodecanoic Acid (PFDA)	142		142		63-171	0	30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	161		154		56-173	4	30
Perfluorononanesulfonic Acid (PFNS)	150		160	Q	48-150	6	30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	155		130		60-166	18	30
Perfluoroundecanoic Acid (PFUnA)	135		133		60-153	1	30
Perfluorodecanesulfonic Acid (PFDS)	155		168	Q	38-156	8	30
Perfluorooctanesulfonamide (FOSA)	152		144		46-170	5	30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	158		134		45-170	16	30
Perfluorododecanoic Acid (PFDoA)	162	Q	160	Q	67-153	1	30

Project Name: PA LANDERS/BMA/RAVEN

Project Number: 14105

Lab Number: L20

L2032047

Report Date:

09/23/20

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
SPLP Perfluorinated Alkyl Acids by Isoto	ope Dilution & EPA 13	12 - Mansfield	Lab Associate	d sample(s):	03 Batch:	WG1398130-2	WG1398130-3	
Perfluorotridecanoic Acid (PFTrDA)	160	Q	160	Q	48-158	0	30	
Perfluorotetradecanoic Acid (PFTA)	124		119		59-182	4	30	

Surrogate (Extracted Internal Standard)	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
	-		-		
Perfluoro[13C4]Butanoic Acid (MPFBA)	77		79		2-156
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	66		68		16-173
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	76		80		31-159
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	60		64		1-313
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	62		65		21-145
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	72		74		30-139
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	80		85		47-153
Perfluoro[13C8]Octanoic Acid (M8PFOA)	71		72		36-149
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	68		72		1-244
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	65		66		34-146
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	81		81		42-146
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	74		78		38-144
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	68		79		7-170
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	73		89		1-181
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	83		86		40-144
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	50		55		1-87
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	74		90		23-146
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	74		77		24-161
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	66		71		33-143

Lab Duplicate Analysis Batch Quality Control

Project Name: PA LANDERS/BMA/RAVEN

Project Number: 14105

Lab Number:

L2032047

Report Date:

09/23/20

rameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
PLP Perfluorinated Alkyl Acids by Isotope Dilution 032047-03 Client ID: GEOMEMBRANE	& EPA 1312 - Mansfield L	ab Associated sample(s):	03 Q0	C Batch ID: WG	31398130-4	QC Sample:
Perfluorobutanoic Acid (PFBA)	1.15J	1.17J	ng/l	NC		30
Perfluoropentanoic Acid (PFPeA)	0.860J	0.818J	ng/l	NC		30
Perfluorobutanesulfonic Acid (PFBS)	ND	ND	ng/l	NC		30
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND	ND	ng/l	NC		30
Perfluorohexanoic Acid (PFHxA)	0.674J	0.702J	ng/l	NC		30
Perfluoropentanesulfonic Acid (PFPeS)	ND	ND	ng/l	NC		30
Perfluoroheptanoic Acid (PFHpA)	0.368J	0.342J	ng/l	NC		30
Perfluorohexanesulfonic Acid (PFHxS)	ND	ND	ng/l	NC		30
Perfluorooctanoic Acid (PFOA)	0.316J	0.280JF	ng/l	NC		30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND	ND	ng/l	NC		30
Perfluoroheptanesulfonic Acid (PFHpS)	ND	ND	ng/l	NC		30
Perfluorononanoic Acid (PFNA)	ND	ND	ng/l	NC		30
Perfluorooctanesulfonic Acid (PFOS)	ND	ND	ng/l	NC		30
Perfluorodecanoic Acid (PFDA)	ND	ND	ng/l	NC		30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND	ND	ng/l	NC		30
Perfluorononanesulfonic Acid (PFNS)	ND	ND	ng/l	NC		30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	ND	ng/l	NC		30
Perfluoroundecanoic Acid (PFUnA)	ND	ND	ng/l	NC		30
Perfluorodecanesulfonic Acid (PFDS)	ND	ND	ng/l	NC		30
Perfluorooctanesulfonamide (FOSA)	ND	ND	ng/l	NC		30

Lab Duplicate Analysis Batch Quality Control

Lab Number:

L2032047 09/23/20

Project Number: 14105

PA LANDERS/BMA/RAVEN

Project Name:

Report Date:

arameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
PLP Perfluorinated Alkyl Acids by Isotope Dilution & 2032047-03 Client ID: GEOMEMBRANE	EPA 1312 - Mansfield I	_ab Associated sample(s):	: 03 QC Bato	ch ID: WG	1398130-4	QC Sample:
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	ND	ng/l	NC		30
Perfluorododecanoic Acid (PFDoA)	ND	ND	ng/l	NC		30
Perfluorotridecanoic Acid (PFTrDA)	ND	ND	ng/l	NC		30
Perfluorotetradecanoic Acid (PFTA)	ND	ND	ng/l	NC		30

			Acceptance	
Surrogate (Extracted Internal Standard)	%Recovery	Qualifier %Recovery	Qualifier Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	71	70	2-156	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	62	61	16-173	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	77	79	31-159	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	59	58	1-313	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	59	59	21-145	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	68	68	30-139	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	80	83	47-153	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	69	68	36-149	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	71	72	1-244	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	65	63	34-146	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	81	82	42-146	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	72	72	38-144	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	74	73	7-170	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	62	58	1-181	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	82	80	40-144	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	33	37	1-87	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	72	83	23-146	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	66	66	24-161	

Lab Duplicate Analysis
Batch Quality Control

Lab Number: PA LANDERS/BMA/RAVEN L2032047

Project Number: 14105 Report Date: 09/23/20

RPD **Parameter Native Sample Duplicate Sample** Units RPD Qual Limits

SPLP Perfluorinated Alkyl Acids by Isotope Dilution & EPA 1312 - Mansfield Lab Associated sample(s): 03 QC Batch ID: WG1398130-4 QC Sample:

L2032047-03 Client ID: GEOMEMBRANE

Project Name:

			Acceptance	
Surrogate (Extracted Internal Standard)	%Recovery Qualif	ier %Recovery Qualifier	Criteria	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	40	46	33-143	

INORGANICS & MISCELLANEOUS

Project Name: PA LANDERS/BMA/RAVEN Lab Number: L2032047

Project Number: 14105 Report Date: 09/23/20

SAMPLE RESULTS

Lab ID: L2032047-01 Date Collected: 08/07/20 08:30

Client ID: LOAM STOCKPILE Date Received: 08/07/20 Sample Location: FOREST DALE/HYANNIS Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - I	Mansfield Lab									
Solids, Total	91.2		%	0.100	0.100	1	-	08/09/20 13:29	121,2540G	SM

Project Name: PA LANDERS/BMA/RAVEN Lab Number: L2032047

Project Number: 14105 Report Date: 09/23/20

SAMPLE RESULTS

Lab ID: L2032047-02 Date Collected: 08/07/20 09:00

Client ID: SAND STOCKPILE Date Received: 08/07/20 Sample Location: FOREST DALE/HYANNIS Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Mansfield Lab									
Solids, Total	98.4		%	0.100	0.100	1	-	08/09/20 13:29	121,2540G	SM

Project Name: PA LANDERS/BMA/RAVEN Lab Number: L2032047

Project Number: 14105 Report Date: 09/23/20

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	рН	•	Pres	Seal	Date/Time	Analysis(*)
L2032047-01A	Plastic 8oz unpreserved	Α	NA		3.1	Υ	Absent		A2-537-ISOTOPE(14)
L2032047-01B	Plastic 2oz unpreserved for TS	Α	NA		3.1	Υ	Absent		A2-TS(7)
L2032047-02A	Plastic 8oz unpreserved	Α	NA		3.1	Υ	Absent		A2-537-ISOTOPE(14)
L2032047-02B	Plastic 2oz unpreserved for TS	Α	NA		3.1	Υ	Absent		A2-TS(7)
L2032047-03A	Plastic 8oz unpreserved	Α	NA		3.1	Υ	Absent		-
L2032047-03B	Plastic 2oz unpreserved for TS	Α	NA		3.1	Υ	Absent		-
L2032047-03X	Plastic 250ml unpreserved Extracts	Α	NA		3.1	Υ	Absent		A2-SPLP-537-ISOTOPE(14)
L2032047-03X1	Plastic 250ml unpreserved Extracts	Α	NA		3.1	Υ	Absent		A2-SPLP-537-ISOTOPE(14)
L2032047-03X2	Plastic 250ml unpreserved Extracts	Α	NA		3.1	Υ	Absent		A2-SPLP-537-ISOTOPE(14)
L2032047-03X3	Plastic 250ml unpreserved Extracts	Α	NA		3.1	Υ	Absent		A2-SPLP-537-ISOTOPE(14)
L2032047-03X9	Tumble Vessel	Α	NA		3.1	Υ	Absent		-

Serial_No:09232019:14 **Lab Number:** L2032047

Project Name: PA LANDERS/BMA/RAVEN

Project Number: 14105 Report Date: 09/23/20

PFAS PARAMETER SUMMARY

Parameter	Acronym	CAS Number
PERFLUOROALKYL CARBOXYLIC ACIDS (PFCAs)		
Perfluorooctadecanoic Acid	PFODA	16517-11-6
Perfluorohexadecanoic Acid	PFHxDA	67905-19-5
Perfluorotetradecanoic Acid	PFTA	376-06-7
Perfluorotridecanoic Acid	PFTrDA	72629-94-8
Perfluorododecanoic Acid	PFDoA	307-55-1
Perfluoroundecanoic Acid	PFUnA	2058-94-8
Perfluorodecanoic Acid	PFDA	335-76-2
Perfluorononanoic Acid	PFNA	375-95-1
Perfluorooctanoic Acid	PFOA	335-67-1
Perfluoroheptanoic Acid	PFHpA	375-85-9
Perfluorohexanoic Acid	PFHxA	307-24-4
Perfluoropentanoic Acid	PFPeA	2706-90-3
Perfluorobutanoic Acid	PFBA	375-22-4
PERFLUOROALKYL SULFONIC ACIDS (PFSAs)		
Perfluorododecanesulfonic Acid	PFDoDS	79780-39-5
Perfluorodecanesulfonic Acid	PFDS	335-77-3
Perfluorononanesulfonic Acid	PFNS	68259-12-1
Perfluorooctanesulfonic Acid	PFOS	1763-23-1
Perfluoroheptanesulfonic Acid	PFHpS	375-92-8
Perfluorohexanesulfonic Acid	PFHxS	355-46-4
Perfluoropentanesulfonic Acid	PFPeS	2706-91-4
Perfluorobutanesulfonic Acid	PFBS	375-73-5
FLUOROTELOMERS		
1H,1H,2H,2H-Perfluorododecanesulfonic Acid	10:2FTS	120226-60-0
1H,1H,2H,2H-Perfluorodecanesulfonic Acid	8:2FTS	39108-34-4
1H,1H,2H,2H-Perfluorooctanesulfonic Acid	6:2FTS	27619-97-2
1H,1H,2H,2H-Perfluorohexanesulfonic Acid	4:2FTS	757124-72-4
PERFLUOROALKANE SULFONAMIDES (FASAs)		
Perfluorooctanesulfonamide	FOSA	754-91-6
N-Ethyl Perfluorooctane Sulfonamide	NEtFOSA	4151-50-2
N-Methyl Perfluorooctane Sulfonamide	NMeFOSA	31506-32-8
PERFLUOROALKANE SULFONYL SUBSTANCES		
N-Ethyl Perfluorooctanesulfonamido Ethanol	NEtFOSE	1691-99-2
N-Methyl Perfluorooctanesulfonamido Ethanol	NMeFOSE	24448-09-7
N-Ethyl Perfluorooctanesulfonamidoacetic Acid	NEtFOSAA	2991-50-6
N-Methyl Perfluorooctanesulfonamidoacetic Acid	NMeFOSAA	2355-31-9
PER- and POLYFLUOROALKYL ETHER CARBOXYLIC ACIDS		
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-Propanoic Acid	HFPO-DA	13252-13-6
4,8-Dioxa-3h-Perfluorononanoic Acid	ADONA	919005-14-4
CHLORO-PERFLUOROALKYL SULFONIC ACIDS		
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	11CI-PF3OUdS	763051-92-9
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid	9CI-PF3ONS	756426-58-1
PERFLUOROETHER SULFONIC ACIDS (PFESAs)		
Perfluoro(2-Ethoxyethane)Sulfonic Acid	PFEESA	113507-82-7
PERFLUOROETHER/POLYETHER CARBOXYLIC ACIDS (PFPCAs)		
Perfluoro-3-Methoxypropanoic Acid	PFMPA	377-73-1
Perfluoro-4-Methoxybutanoic Acid	PFMBA	863090-89-5
	NFDHA	151772-58-6

Project Name: PA LANDERS/BMA/RAVEN Lab Number: L2032047

Project Number: 14105 Report Date: 09/23/20

GLOSSARY

Acronyms

EDL

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

RPD

Report Format: DU Report with 'J' Qualifiers

Project Name:PA LANDERS/BMA/RAVENLab Number:L2032047Project Number:14105Report Date:09/23/20

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.

Report Format: DU Report with 'J' Qualifiers

Project Name:PA LANDERS/BMA/RAVENLab Number:L2032047Project Number:14105Report Date:09/23/20

Data Qualifiers

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- \boldsymbol{R} Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Project Name:PA LANDERS/BMA/RAVENLab Number:L2032047Project Number:14105Report Date:09/23/20

REFERENCES

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS) using Isotope Dilution. Alpha SOP 23528.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance Title: Certificate/Approval Program Summary

Revision 17 Published Date: 4/28/2020 9:42:21 AM

Page 1 of 1

ID No.:17873

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-

Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

EPA TO-12 Non-methane organics

EPA 3C Fixed gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

ALPHA	CHAIN	OF CUS	TODY	PAGE	as I	Date	Rec'd in I	Lab: 8/	1120		ALPH	A Job#: (20320L
Send with Phone 781-2	(W, Sten GAR 6A MA 02563	Project Nam Project Loca Project # Project Man: ALPHA Quo Turn-Aro	ager: B-yan ote#: und Time	Inte/H	Jann 15	Regu State	AX DEx latory Re	equirement	L Deliverables s/Report L		Same	g Information a as Client info PO#.
Other Project S	sye been previously analyzed by Alp Specific Requirements/Co	mments/Detection	& Fur Luc	Sample	Sampler's	PEAH - ANALYSIS	SPLP PRACE BUSHE	Bluth				SAMPLE HANDLING Filtration Done Not needed Lab to do Preservation Lab to do Please specify below) Sample Specific Comments
32047-01	Louis Stock Pine Sund Stock Pine Geomem wome &	0 5	2/1022 0530	S	Ban	×						Sumple Specific Comments
, 0.3	GCOM em brane		W 11:35		V		×					
Di Pa lances Or Pa lances Or Boma/Rav	In- separate Bray	Relinquished	d By:	Pre	iner Type eservative	P P			2 8	Date/1	199	Please print clearly, legibly and corpletely. Samples can not be logger in and turnaround time clock will no start until any ambiguities are resolall samples submitted are subject to Alpha's Terms and Conditions.

ANALYTICAL REPORT

Lab Number: L2039248

Client: Horseley & Witten, Inc.

Sextant Hill Office Park

90 Route 6A

Sandwich, MA 02563

ATTN: Brian Massa
Phone: (508) 833-6600

Project Name: BARNSTABLE AIRPORT

Project Number: 14105 Report Date: 09/23/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name: BARNSTABLE AIRPORT

Project Number: 14105

Lab Number: L2039248 **Report Date:** 09/23/20

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2039248-01	A17	SOIL	HYANNIS, MA	09/17/20 13:15	09/18/20
L2039248-02	A16	SOIL	HYANNIS, MA	09/17/20 12:51	09/18/20
L2039248-03	HW-P(M)[8-10]	SOIL	HYANNIS, MA	09/18/20 09:46	09/18/20
L2039248-04	HW-P(M)[18-20]	SOIL	HYANNIS, MA	09/18/20 09:59	09/18/20

Project Name: BARNSTABLE AIRPORT Lab Number: L2039248

Project Number: 14105 Report Date: 09/23/20

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
Α	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	N/A
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A response to questions G, H and I is required for "Presumptive Certainty" status						
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	YES				
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	YES				
ı	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	YES				

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Lab Number:

Project Name: BARNSTABLE AIRPORT

Project Number: 14105 Report Date: 09/23/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:BARNSTABLE AIRPORTLab Number:L2039248Project Number:14105Report Date:09/23/20

Case Narrative (continued)

Report Revision

September 23, 2020: All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

MCP Related Narratives

Report Submission

All MCP required questions were answered with affirmative responses; therefore, there are no relevant protocol-specific QC and/or performance standard non-conformances to report.

Non-MCP Related Narratives

Perfluorinated Alkyl Acids by Isotope Dilution

L2039248-01, -02, -03, and -04: Extracted Internal Standard recoveries were outside the acceptance criteria for individual analytes. Please refer to the surrogate section of the report for details.

The WG1412383-4 MS recovery, performed on L2039248-01, is outside the acceptance criteria for n-methyl perfluorooctanesulfonamidoacetic acid (nmefosaa) (151%).

WG1412383-4 and WG1412383-5: Extracted Internal Standard recoveries were outside the acceptance criteria for individual analytes. Please refer to the surrogate section of the report for details.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 09/23/20

Sufani Morrissey-Tiffani Morrissey

QC OUTLIER SUMMARY REPORT

Project Name: BARNSTABLE AIRPORT Lab Number:

L2039248

Project Number: 14105

Report Date:

09/23/20

					Recovery/RPD QC Limits		Associated	Data Quality
Method	Client ID (Native ID)	Lab ID	Parameter	QC Type	(%)	(%)	Samples	Assessment
Perfluorinate	ed Alkyl Acids by Isotope Dilution -	Mansfield Lab						
LCMSMS-ID	Batch QC (L2039248-01)	WG1412383-4	N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	MS	151	63-144	01-04	potential high bias

ORGANICS

SEMIVOLATILES

L2039248

Project Name: BARNSTABLE AIRPORT

Project Number: 14105

SAMPLE RESULTS

Benert Date:

Lab Number:

Report Date: 09/23/20

Lab ID: L2039248-01

Client ID: A17

Sample Location: HYANNIS, MA

Sample Depth:

Matrix: Soil

Analytical Method: 134,LCMSMS-ID Analytical Date: 09/21/20 23:00

Analyst: SG Percent Solids: 93% Date Collected: 09/17/20 13:15

Date Received: 09/18/20

Field Prep: Not Specified

Extraction Method: ALPHA 23528
Extraction Date: 09/21/20 09:30

Qualifier Units RL MDL **Dilution Factor Parameter** Result Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab Perfluorobutanoic Acid (PFBA) 2.03 0.960 0.022 ng/g 1 Perfluoropentanoic Acid (PFPeA) 3.73 0.960 0.044 ng/g Perfluorobutanesulfonic Acid (PFBS) ND 0.960 0.037 1 ng/g 1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS) ND 0.960 0.062 1 ng/g Perfluorohexanoic Acid (PFHxA) 1.22 ng/g 0.960 0.050 1 Perfluoropentanesulfonic Acid (PFPeS) ND 0.960 0.080 1 ng/g 1.07 0.960 0.043 Perfluoroheptanoic Acid (PFHpA) 1 ng/g Perfluorohexanesulfonic Acid (PFHxS) ND 0.960 0.058 1 ng/g Perfluorooctanoic Acid (PFOA) 0.989 ng/g 0.960 0.040 1 1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS) ND 0.960 1 0.172 ng/g Perfluoroheptanesulfonic Acid (PFHpS) ND 0.960 0.131 1 ng/g 0.774 J 0.072 Perfluorononanoic Acid (PFNA) ng/g 0.960 1 J Perfluorooctanesulfonic Acid (PFOS) 0.573 0.960 0.125 1 ng/g J Perfluorodecanoic Acid (PFDA) 0.147 0.960 0.064 1 ng/g 1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS) ND 0.960 0.276 1 ng/g Perfluorononanesulfonic Acid (PFNS) ND 0.960 0.287 1 ng/g N-Methyl Perfluorooctanesulfonamidoacetic Acid 0.193 J 0.960 0.193 1 ng/g Perfluoroundecanoic Acid (PFUnA) 0.228 J 0.960 0.045 1 ng/g Perfluorodecanesulfonic Acid (PFDS) ND 0.960 0.147 1 ng/g Perfluorooctanesulfonamide (FOSA) ND 0.960 0.094 1 ng/g N-Ethyl Perfluorooctanesulfonamidoacetic Acid 0.245 J 0.960 0.081 ng/g (NEtFOSAA) Perfluorododecanoic Acid (PFDoA) ND 0.960 0.067 1 ng/g Perfluorotridecanoic Acid (PFTrDA) ND 0.960 0.196 ng/g Perfluorotetradecanoic Acid (PFTA) 0.068 J 0.960 0.052 1 ng/g

Project Name: BARNSTABLE AIRPORT Lab Number: L2039248

Project Number: 14105 Report Date: 09/23/20

SAMPLE RESULTS

Lab ID: L2039248-01 Date Collected: 09/17/20 13:15

Client ID: A17 Date Received: 09/18/20

Sample Location: HYANNIS, MA Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	35	Q	60-153
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	31	Q	65-182
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	84		70-151
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	44	Q	56-138
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	31	Q	61-147
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	36	Q	62-149
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	96		63-166
Perfluoro[13C8]Octanoic Acid (M8PFOA)	39	Q	62-152
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	51		32-182
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	46	Q	61-154
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	90		65-151
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	55	Q	65-150
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	57		25-186
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	9	Q	45-137
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	66		64-158
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	38		1-125
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	13	Q	42-136
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	64		56-148
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	43		26-160

L2039248

09/23/20

09/17/20 12:51

Project Name: BARNSTABLE AIRPORT

Project Number: 14105

SAMPLE RESULTS

Lab Number:

Report Date:

Date Collected:

Lab ID: L2039248-02 Client ID: A16

Sample Location: HYANNIS, MA

Sample Depth:

Matrix: Soil

Analytical Method: 134,LCMSMS-ID Analytical Date: 09/21/20 23:33

Analyst: SG 95% Percent Solids:

Date Received: 09/18/20 Field Prep: Not Specified

Extraction Method: ALPHA 23528

Extraction Date: 09/21/20 09:30

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	0.165	J	ng/g	0.948	0.022	1
Perfluoropentanoic Acid (PFPeA)	0.229	J	ng/g	0.948	0.044	1
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/g	0.948	0.037	1
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/g	0.948	0.061	1
Perfluorohexanoic Acid (PFHxA)	0.148	J	ng/g	0.948	0.050	1
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/g	0.948	0.079	1
Perfluoroheptanoic Acid (PFHpA)	0.067	J	ng/g	0.948	0.043	1
Perfluorohexanesulfonic Acid (PFHxS)	0.085	J	ng/g	0.948	0.057	1
Perfluorooctanoic Acid (PFOA)	0.088	J	ng/g	0.948	0.040	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/g	0.948	0.170	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/g	0.948	0.129	1
Perfluorononanoic Acid (PFNA)	0.119	J	ng/g	0.948	0.071	1
Perfluorooctanesulfonic Acid (PFOS)	2.02	F	ng/g	0.948	0.123	1
Perfluorodecanoic Acid (PFDA)	0.074	J	ng/g	0.948	0.064	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/g	0.948	0.272	1
Perfluorononanesulfonic Acid (PFNS)	ND		ng/g	0.948	0.284	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/g	0.948	0.191	1
Perfluoroundecanoic Acid (PFUnA)	0.136	J	ng/g	0.948	0.044	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/g	0.948	0.145	1
Perfluorooctanesulfonamide (FOSA)	ND		ng/g	0.948	0.093	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/g	0.948	0.080	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/g	0.948	0.066	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/g	0.948	0.194	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/g	0.948	0.051	1

Project Name: BARNSTABLE AIRPORT Lab Number: L2039248

Project Number: 14105 Report Date: 09/23/20

SAMPLE RESULTS

Lab ID: L2039248-02 Date Collected: 09/17/20 12:51

Client ID: A16 Date Received: 09/18/20

Sample Location: HYANNIS, MA Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	39	Q	60-153
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	37	Q	65-182
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	88		70-151
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	48	Q	56-138
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	39	Q	61-147
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	48	Q	62-149
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	98		63-166
Perfluoro[13C8]Octanoic Acid (M8PFOA)	54	Q	62-152
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	55		32-182
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	64		61-154
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	92		65-151
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	70		65-150
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	61		25-186
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	17	Q	45-137
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	83		64-158
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	41		1-125
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	31	Q	42-136
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	77		56-148
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	53		26-160

09/18/20 09:46

Project Name: BARNSTABLE AIRPORT

Project Number: 14105

SAMPLE RESULTS

Lab Number: L2039248

Report Date: 09/23/20

SAMIFEL RESUL

Lab ID: L2039248-03
Client ID: HW-P(M)[8-10]
Sample Location: HYANNIS, MA

Date Received: 09/18/20 Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Soil

Analytical Method: 134,LCMSMS-ID Analytical Date: 09/22/20 00:07

Analyst: SG Percent Solids: 97% Extraction Method: ALPHA 23528
Extraction Date: 09/21/20 09:30

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	ND		ng/g	0.975	0.022	1
Perfluoropentanoic Acid (PFPeA)	0.046	J	ng/g	0.975	0.045	1
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/g	0.975	0.038	1
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/g	0.975	0.063	1
Perfluorohexanoic Acid (PFHxA)	0.055	J	ng/g	0.975	0.051	1
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/g	0.975	0.081	1
Perfluoroheptanoic Acid (PFHpA)	ND		ng/g	0.975	0.044	1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/g	0.975	0.059	1
Perfluorooctanoic Acid (PFOA)	0.089	J	ng/g	0.975	0.041	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	0.221	J	ng/g	0.975	0.175	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/g	0.975	0.133	1
Perfluorononanoic Acid (PFNA)	ND		ng/g	0.975	0.073	1
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/g	0.975	0.127	1
Perfluorodecanoic Acid (PFDA)	ND		ng/g	0.975	0.065	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/g	0.975	0.280	1
Perfluorononanesulfonic Acid (PFNS)	ND		ng/g	0.975	0.292	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/g	0.975	0.196	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/g	0.975	0.046	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/g	0.975	0.149	1
Perfluorooctanesulfonamide (FOSA)	ND		ng/g	0.975	0.096	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/g	0.975	0.082	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/g	0.975	0.068	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/g	0.975	0.199	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/g	0.975	0.053	1

Project Name: BARNSTABLE AIRPORT Lab Number: L2039248

Project Number: 14105 Report Date: 09/23/20

SAMPLE RESULTS

Lab ID: L2039248-03 Date Collected: 09/18/20 09:46

Client ID: HW-P(M)[8-10] Date Received: 09/18/20 Sample Location: HYANNIS, MA Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	73		60-153	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	78		65-182	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	92		70-151	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	51	Q	56-138	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	84		61-147	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	94		62-149	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	106		63-166	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	91		62-152	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	58		32-182	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	95		61-154	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	100		65-151	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	92		65-150	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	61		25-186	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	17	Q	45-137	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	100		64-158	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	29		1-125	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	17	Q	42-136	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	93		56-148	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	62		26-160	

L2039248

Project Name: BARNSTABLE AIRPORT

Project Number: 14105

SAMPLE RESULTS

Report Date: 09/23/20

Lab Number:

Lab ID: L2039248-04

Client ID: HW-P(M)[18-20] Sample Location: HYANNIS, MA

Date Collected: 09/18/20 09:59 Date Received: 09/18/20 Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Analytical Method: 134,LCMSMS-ID Analytical Date: 09/22/20 00:23

Analyst: SG 98% Percent Solids:

Extraction Method: ALPHA 23528 **Extraction Date:** 09/21/20 09:30

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	ND		ng/g	0.956	0.022	1
Perfluoropentanoic Acid (PFPeA)	0.044	J	ng/g	0.956	0.044	1
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/g	0.956	0.037	1
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/g	0.956	0.062	1
Perfluorohexanoic Acid (PFHxA)	ND		ng/g	0.956	0.050	1
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/g	0.956	0.080	1
Perfluoroheptanoic Acid (PFHpA)	ND		ng/g	0.956	0.043	1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/g	0.956	0.058	1
Perfluorooctanoic Acid (PFOA)	0.046	J	ng/g	0.956	0.040	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/g	0.956	0.172	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/g	0.956	0.130	1
Perfluorononanoic Acid (PFNA)	ND		ng/g	0.956	0.072	1
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/g	0.956	0.124	1
Perfluorodecanoic Acid (PFDA)	ND		ng/g	0.956	0.064	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/g	0.956	0.274	1
Perfluorononanesulfonic Acid (PFNS)	ND		ng/g	0.956	0.286	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/g	0.956	0.192	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/g	0.956	0.045	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/g	0.956	0.146	1
Perfluorooctanesulfonamide (FOSA)	ND		ng/g	0.956	0.094	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/g	0.956	0.081	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/g	0.956	0.067	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/g	0.956	0.195	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/g	0.956	0.052	1

Project Name: BARNSTABLE AIRPORT Lab Number: L2039248

Project Number: 14105 Report Date: 09/23/20

SAMPLE RESULTS

Lab ID: L2039248-04 Date Collected: 09/18/20 09:59

Client ID: HW-P(M)[18-20] Date Received: 09/18/20 Sample Location: HYANNIS, MA Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	19	Q	60-153
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	22	Q	65-182
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	92		70-151
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	49	Q	56-138
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	25	Q	61-147
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	31	Q	62-149
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	106		63-166
Perfluoro[13C8]Octanoic Acid (M8PFOA)	35	Q	62-152
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	55		32-182
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	43	Q	61-154
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	97		65-151
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	48	Q	65-150
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	70		25-186
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	3	Q	45-137
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	60	Q	64-158
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	19		1-125
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	4	Q	42-136
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	60		56-148
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	52		26-160

L2039248

Lab Number:

Project Name: BARNSTABLE AIRPORT

134,LCMSMS-ID

09/21/20 20:14

Project Number: 14105 Report Date: 09/23/20

Method Blank Analysis Batch Quality Control

Batch Quality Control

Analyst: SG

Analytical Method:

Analytical Date:

Extraction Method: ALPHA 23528 Extraction Date: 09/21/20 09:30

arameter	Result	Qualifier Units	RL.	MDL	
erfluorinated Alkyl Acids by Isotope	Dilution -	Mansfield Lab fo	r sample(s):	01-04 Batch:	WG1412383-
Perfluorobutanoic Acid (PFBA)	ND	ng/g	1.00	0.023	
Perfluoropentanoic Acid (PFPeA)	ND	ng/g	1.00	0.046	
Perfluorobutanesulfonic Acid (PFBS)	ND	ng/g	1.00	0.039	
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	d ND	ng/g	1.00	0.065	
Perfluorohexanoic Acid (PFHxA)	ND	ng/g	1.00	0.053	
Perfluoropentanesulfonic Acid (PFPeS)	ND	ng/g	1.00	0.084	
Perfluoroheptanoic Acid (PFHpA)	ND	ng/g	1.00	0.045	
Perfluorohexanesulfonic Acid (PFHxS)	ND	ng/g	1.00	0.061	
Perfluorooctanoic Acid (PFOA)	ND	ng/g	1.00	0.042	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND	ng/g	1.00	0.180	
Perfluoroheptanesulfonic Acid (PFHpS)	ND	ng/g	1.00	0.136	
Perfluorononanoic Acid (PFNA)	ND	ng/g	1.00	0.075	
Perfluorooctanesulfonic Acid (PFOS)	ND	ng/g	1.00	0.130	
Perfluorodecanoic Acid (PFDA)	ND	ng/g	1.00	0.067	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	d ND	ng/g	1.00	0.287	
Perfluorononanesulfonic Acid (PFNS)	ND	ng/g	1.00	0.299	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	c ND	ng/g	1.00	0.202	
Perfluoroundecanoic Acid (PFUnA)	ND	ng/g	1.00	0.047	
Perfluorodecanesulfonic Acid (PFDS)	ND	ng/g	1.00	0.153	
Perfluorooctanesulfonamide (FOSA)	ND	ng/g	1.00	0.098	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	ng/g	1.00	0.085	
Perfluorododecanoic Acid (PFDoA)	ND	ng/g	1.00	0.070	
Perfluorotridecanoic Acid (PFTrDA)	ND	ng/g	1.00	0.204	
Perfluorotetradecanoic Acid (PFTA)	ND	ng/g	1.00	0.054	

L2039248

Project Name: BARNSTABLE AIRPORT Lab Number:

Project Number: 14105 Report Date: 09/23/20

Method Blank Analysis
Batch Quality Control

Analytical Method: 134,LCMSMS-ID Extraction Method: ALPHA 23528
Analytical Date: 09/21/20 20:14 Extraction Date: 09/21/20 09:30

Analyst: SG

Parameter Result Qualifier Units RL MDL

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab for sample(s): 01-04 Batch: WG1412383-1

		Acceptance
Surrogate (Extracted Internal Standard)	%Recovery	Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	92	60-153
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	92	65-182
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	103	70-151
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	56	56-138
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	102	61-147
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	110	62-149
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	115	63-166
Perfluoro[13C8]Octanoic Acid (M8PFOA)	105	62-152
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	60	32-182
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	105	61-154
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	105	65-151
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	101	65-150
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	61	25-186
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	67	45-137
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	107	64-158
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	24	1-125
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	66	42-136
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	93	56-148
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	67	26-160

Lab Control Sample Analysis Batch Quality Control

Project Name: BARNSTABLE AIRPORT

Project Number: 14105

Lab Number: L2039248

Report Date: 09/23/20

rameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD		PD nits
rfluorinated Alkyl Acids by Isotope Diluti	ion - Mansfield Lab	Associated sar	mple(s): 01-04	Batch:	WG1412383-2	WG1412383-3		
Perfluorobutanoic Acid (PFBA)	102		102		71-135	0	;	30
Perfluoropentanoic Acid (PFPeA)	106		106		69-132	0	;	30
Perfluorobutanesulfonic Acid (PFBS)	104		103		72-128	1	;	30
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	126		118		62-145	7	:	30
Perfluorohexanoic Acid (PFHxA)	105		104		70-132	1	:	30
Perfluoropentanesulfonic Acid (PFPeS)	92		90		73-123	2	;	30
Perfluoroheptanoic Acid (PFHpA)	100		101		71-131	1	;	30
Perfluorohexanesulfonic Acid (PFHxS)	100		103		67-130	3	;	30
Perfluorooctanoic Acid (PFOA)	102		99		69-133	3	;	30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	117		114		64-140	3	:	30
Perfluoroheptanesulfonic Acid (PFHpS)	102		107		70-132	5	:	30
Perfluorononanoic Acid (PFNA)	105		105		72-129	0	;	30
Perfluorooctanesulfonic Acid (PFOS)	110		114		68-136	4	;	30
Perfluorodecanoic Acid (PFDA)	101		101		69-133	0	;	30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	108		114		65-137	5	;	30
Perfluorononanesulfonic Acid (PFNS)	111		118		69-125	6	;	30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	97		108		63-144	11	;	30
Perfluoroundecanoic Acid (PFUnA)	107		108		64-136	1	;	30
Perfluorodecanesulfonic Acid (PFDS)	128		131		59-134	2	;	30
Perfluorooctanesulfonamide (FOSA)	94		95		67-137	1	;	30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	114		119		61-139	4	:	30
Perfluorododecanoic Acid (PFDoA)	102		102		69-135	0	:	30

Lab Control Sample Analysis Batch Quality Control

Project Name: BARNSTABLE AIRPORT

Project Number: 14105

Lab Number:

L2039248

Report Date:

09/23/20

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Perfluorinated Alkyl Acids by Isotope Dilution	- Mansfield Lab	Associated sa	ample(s): 01-04	Batch:	WG1412383-2	WG1412383-3			
Perfluorotridecanoic Acid (PFTrDA)	100		98		66-139	2		30	
Perfluorotetradecanoic Acid (PFTA)	114		118		69-133	3		30	

Surrogate (Extracted Internal Standard)	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	86		82		60-153	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	88		84		65-182	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	102		99		70-151	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	58		59		56-138	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	98		91		61-147	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	107		100		62-149	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	113		110		63-166	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	102		99		62-152	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	61		61		32-182	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	105		101		61-154	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	106		102		65-151	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	101		100		65-150	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	67		69		25-186	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	68		63		45-137	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	104		103		64-158	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	6		15		1-125	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	70		66		42-136	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	98		97		56-148	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	69		67		26-160	

Matrix Spike Analysis Batch Quality Control

Project Name: BARNSTABLE AIRPORT

Project Number: 14105

Lab Number:

L2039248

Report Date:

09/23/20

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits	
Perfluorinated Alkyl Acids by Is	sotope Dilution	- Mansfield	Lab Associ	ated sample(s):	01-04	QC Batch	ID: WG141238	3-4	QC Sample:	L203924	18-01	Client ID:	A17
Perfluorobutanoic Acid (PFBA)	2.03	4.78	7.14	107		-	-		71-135	-		30	
Perfluoropentanoic Acid (PFPeA)	3.73	4.78	9.04	111		-	-		69-132	-		30	
Perfluorobutanesulfonic Acid (PFBS)	ND	4.24	4.49	106		-	-		72-128	-		30	
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND	4.47	5.84	131		-	-		62-145	-		30	
Perfluorohexanoic Acid (PFHxA)	1.22	4.78	6.34	107		-	-		70-132	-		30	
Perfluoropentanesulfonic Acid (PFPeS)	ND	4.49	4.27	95		-	-		73-123	-		30	
Perfluoroheptanoic Acid (PFHpA)	1.07	4.78	5.91	101		-	-		71-131	-		30	
Perfluorohexanesulfonic Acid (PFHxS)	ND	4.37	4.45	102		-	-		67-130	-		30	
Perfluorooctanoic Acid (PFOA)	0.989	4.78	6.04	106		-	-		69-133	-		30	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND	4.55	5.57F	122		-	-		64-140	-		30	
Perfluoroheptanesulfonic Acid (PFHpS)	ND	4.55	4.93	108		-	-		70-132	-		30	
Perfluorononanoic Acid (PFNA)	0.774J	4.78	5.87	123		-	-		72-129	-		30	
Perfluorooctanesulfonic Acid (PFOS)	0.573J	4.44	5.40F	122		-	-		68-136	-		30	
Perfluorodecanoic Acid (PFDA)	0.147J	4.78	5.15	108		-	-		69-133	-		30	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND	4.59	4.53F	99		-	-		65-137	-		30	
Perfluorononanesulfonic Acid (PFNS)	ND	4.6	5.32	116		-	-		69-125	-		30	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	0.193J	4.78	7.24	151	Q	-	-		63-144	-		30	
Perfluoroundecanoic Acid (PFUnA)	0.228J	4.78	5.37	112		-	-		64-136	-		30	
Perfluorodecanesulfonic Acid (PFDS)	ND	4.61	5.62	122		-	-		59-134	-		30	
Perfluorooctanesulfonamide (FOSA)	ND	4.78	4.85F	101		-	-		67-137	•		30	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	0.245J	4.78	4.94	103		-	-		61-139	-		30	
Perfluorododecanoic Acid (PFDoA)	ND	4.78	4.97	104		-	-		69-135	-		30	

Matrix Spike Analysis Batch Quality Control

Project Name: BARNSTABLE AIRPORT

Project Number: 14105

Lab Number:

L2039248

Report Date: 09/23/20

	Native	MS	MS	MS		MSD	MSD		Recovery			RPD	
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual	Limits	
Perfluorinated Alkyl Acids by	Isotope Dilution	- Mansfield I	Lab Associa	ated sample(s):	01-04	QC Batch	ID: WG141238	3-4	QC Sample:	L203924	48-01	Client ID:	A17
Perfluorotridecanoic Acid (PFTrDA)	ND	4.78	5.01	105		-	-		66-139	-		30	
Perfluorotetradecanoic Acid (PFTA)	0.068J	4.78	5.54	116		-	-		69-133	-		30	

	MS	3	MSD	Acceptance
Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	% Recovery Qualifier	Criteria
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	63			25-186
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	47	Q		56-138
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	51			32-182
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	12	Q		42-136
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	5	Q		45-137
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	72			64-158
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	60	Q		65-150
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	42	Q		61-147
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	47	Q		62-149
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	95			63-166
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	68			56-148
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	44			26-160
Perfluoro[13C4]Butanoic Acid (MPFBA)	47	Q		60-153
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	44	Q		65-182
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	56			1-125
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	88			65-151
Perfluoro[13C8]Octanoic Acid (M8PFOA)	49	Q		62-152
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	57	Q		61-154
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	84			70-151

Lab Duplicate Analysis Batch Quality Control

Project Name: BARNSTABLE AIRPORT

Project Number: 14105

Lab Number: L2039248

Report Date: 09/23/20

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
Perfluorinated Alkyl Acids by Isotope Dilution - D: A16	Mansfield Lab Associated sa	mple(s): 01-04 QC Ba	atch ID: WG141	2383-5	QC Sample: L2039248-02 Client
Perfluorobutanoic Acid (PFBA)	0.165J	0.158J	ng/g	NC	30
Perfluoropentanoic Acid (PFPeA)	0.229J	0.227J	ng/g	NC	30
Perfluorobutanesulfonic Acid (PFBS)	ND	ND	ng/g	NC	30
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND	ND	ng/g	NC	30
Perfluorohexanoic Acid (PFHxA)	0.148J	0.149J	ng/g	NC	30
Perfluoropentanesulfonic Acid (PFPeS)	ND	ND	ng/g	NC	30
Perfluoroheptanoic Acid (PFHpA)	0.067J	0.070J	ng/g	NC	30
Perfluorohexanesulfonic Acid (PFHxS)	0.085J	0.090J	ng/g	NC	30
Perfluorooctanoic Acid (PFOA)	0.088J	0.099J	ng/g	NC	30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND	ND	ng/g	NC	30
Perfluoroheptanesulfonic Acid (PFHpS)	ND	ND	ng/g	NC	30
Perfluorononanoic Acid (PFNA)	0.119J	0.109J	ng/g	NC	30
Perfluorooctanesulfonic Acid (PFOS)	2.02F	2.00F	ng/g	1	30
Perfluorodecanoic Acid (PFDA)	0.074J	0.075J	ng/g	NC	30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND	ND	ng/g	NC	30
Perfluorononanesulfonic Acid (PFNS)	ND	ND	ng/g	NC	30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	ND	ng/g	NC	30
Perfluoroundecanoic Acid (PFUnA)	0.136J	0.148J	ng/g	NC	30
Perfluorodecanesulfonic Acid (PFDS)	ND	ND	ng/g	NC	30
Perfluorooctanesulfonamide (FOSA)	ND	ND	ng/g	NC	30

Lab Duplicate Analysis Batch Quality Control

Project Name: BARNSTABLE AIRPORT

Project Number: 14105

Quality Control

Lab Number: L2039248

Report Date: 09/23/20

Parameter	Native Sample	Duplicate Sampl	le Units	RPD	Qual	RPD Limits
Perfluorinated Alkyl Acids by Isotope Dilution - NID: A16	Mansfield Lab Associated sar	mple(s): 01-04 QC	Batch ID: WG1412	2383-5 C	QC Sample:	L2039248-02 Cli
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	ND	ng/g	NC		30
Perfluorododecanoic Acid (PFDoA)	ND	ND	ng/g	NC		30
Perfluorotridecanoic Acid (PFTrDA)	ND	ND	ng/g	NC		30
Perfluorotetradecanoic Acid (PFTA)	ND	ND	ng/g	NC		30

					Acceptance
Surrogate (Extracted Internal Standard)	%Recovery	Qualifier	%Recovery	Qualifier	Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	39	Q	37	Q	60-153
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	37	Q	34	Q	65-182
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	88		94		70-151
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	48	Q	54	Q	56-138
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	39	Q	35	Q	61-147
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	48	Q	45	Q	62-149
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	98		104		63-166
Perfluoro[13C8]Octanoic Acid (M8PFOA)	54	Q	49	Q	62-152
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	55		64		32-182
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	64		59	Q	61-154
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	92		99		65-151
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	70		70		65-150
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	61		64		25-186
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	17	Q	21	Q	45-137
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	83		84		64-158
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	41		27		1-125
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	31	Q	27	Q	42-136
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	77		80		56-148

Lab Duplicate Analysis
Batch Quality Control

Batch Quality Control Lab Number: L2039248

Project Number: 14105 Report Date: 09/23/20

RPD

Parameter Native Sample Duplicate Sample Units RPD Qual Limits

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab Associated sample(s): 01-04 QC Batch ID: WG1412383-5 QC Sample: L2039248-02 Client

ID: A16

Project Name:

BARNSTABLE AIRPORT

	Acceptance Acceptance							
Surrogate (Extracted Internal Standard)	%Recovery Qualif	ier %Recovery Qualifier	Criteria					
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	53	55	26-160					

INORGANICS & MISCELLANEOUS

Project Name: BARNSTABLE AIRPORT Lab Number: L2039248

Project Number: 14105 Report Date: 09/23/20

SAMPLE RESULTS

Lab ID: L2039248-01 Date Collected: 09/17/20 13:15

Client ID: A17 Date Received: 09/18/20

Sample Location: HYANNIS, MA Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Ma	ansfield Lab									
Solids, Total	93.4		%	0.100	0.100	1	-	09/20/20 13:07	121,2540G	JW

Project Name: BARNSTABLE AIRPORT Lab Number: L2039248

Project Number: 14105 Report Date: 09/23/20

SAMPLE RESULTS

Lab ID: L2039248-02 Date Collected: 09/17/20 12:51

Client ID: A16 Date Received: 09/18/20

Sample Location: HYANNIS, MA Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - N	Mansfield Lab									
Solids, Total	95.2		%	0.100	0.100	1	-	09/20/20 13:07	121,2540G	JW

Project Name: BARNSTABLE AIRPORT Lab Number: L2039248

Project Number: 14105 Report Date: 09/23/20

SAMPLE RESULTS

 Lab ID:
 L2039248-03
 Date Collected:
 09/18/20 09:46

 Client ID:
 HW-P(M)[8-10]
 Date Received:
 09/18/20

 Sample Location:
 HYANNIS, MA
 Field Prep:
 Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - M	lansfield Lab									
Solids, Total	96.5		%	0.100	0.100	1	-	09/20/20 13:07	121,2540G	JW

Project Name: BARNSTABLE AIRPORT Lab Number: L2039248

Report Date: **Project Number:** 14105 09/23/20

SAMPLE RESULTS

Lab ID: Date Collected: L2039248-04 09/18/20 09:59 Client ID: Date Received: HW-P(M)[18-20] 09/18/20 Not Specified

Sample Location: HYANNIS, MA Field Prep:

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - N	Mansfield Lab									
Solids, Total	97.8		%	0.100	0.100	1	-	09/20/20 13:07	121,2540G	JW

BARNSTABLE AIRPORT L2039248

Project Number: 14105 Report Date: 09/23/20

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Project Name:

Cooler Custody Seal

A Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2039248-01A	Plastic 8oz unpreserved	Α	NA		2.5	Υ	Absent		A2-537-ISOTOPE(14)
L2039248-01B	Plastic 2oz unpreserved for TS	Α	NA		2.5	Υ	Absent		A2-TS(7)
L2039248-02A	Plastic 8oz unpreserved	Α	NA		2.5	Υ	Absent		A2-537-ISOTOPE(14)
L2039248-02B	Plastic 2oz unpreserved for TS	Α	NA		2.5	Υ	Absent		A2-TS(7)
L2039248-03A	Plastic 8oz unpreserved	Α	NA		2.5	Υ	Absent		A2-537-ISOTOPE(14)
L2039248-03B	Plastic 2oz unpreserved for TS	Α	NA		2.5	Υ	Absent		A2-TS(7)
L2039248-04A	Plastic 8oz unpreserved	Α	NA		2.5	Υ	Absent		A2-537-ISOTOPE(14)
L2039248-04B	Plastic 2oz unpreserved for TS	Α	NA		2.5	Υ	Absent		A2-TS(7)

Serial_No:09232019:14
Lab Number: L2039

Project Name: L2039248 BARNSTABLE AIRPORT Report Date: 09/23/20

Project Number: 14105

PFAS PARAMETER SUMMARY

Parameter	Acronym	CAS Number
PERFLUOROALKYL CARBOXYLIC ACIDS (PFCAs)		
Perfluorooctadecanoic Acid	PFODA	16517-11-6
Perfluorohexadecanoic Acid	PFHxDA	67905-19-5
Perfluorotetradecanoic Acid	PFTA	376-06-7
Perfluorotridecanoic Acid	PFTrDA	72629-94-8
Perfluorododecanoic Acid	PFDoA	307-55-1
Perfluoroundecanoic Acid	PFUnA	2058-94-8
Perfluorodecanoic Acid	PFDA	335-76-2
Perfluorononanoic Acid	PFNA	375-95-1
Perfluorooctanoic Acid	PFOA	335-67-1
Perfluoroheptanoic Acid	PFHpA	375-85-9
Perfluorohexanoic Acid	PFHxA	307-24-4
Perfluoropentanoic Acid	PFPeA	2706-90-3
Perfluorobutanoic Acid	PFBA	375-22-4
PERFLUOROALKYL SULFONIC ACIDS (PFSAs)		
Perfluorododecanesulfonic Acid	PFDoDS	79780-39-5
Perfluorodecanesulfonic Acid	PFDS	335-77-3
Perfluorononanesulfonic Acid	PFNS	68259-12-1
Perfluorooctanesulfonic Acid	PFOS	1763-23-1
Perfluoroheptanesulfonic Acid	PFHpS	375-92-8
Perfluorohexanesulfonic Acid	PFHxS	355-46-4
Perfluoropentanesulfonic Acid	PFPeS	2706-91-4
Perfluorobutanesulfonic Acid	PFBS	375-73-5
FLUOROTELOMERS		
1H,1H,2H,2H-Perfluorododecanesulfonic Acid	10:2FTS	120226-60-0
1H,1H,2H,2H-Perfluorodecanesulfonic Acid	8:2FTS	39108-34-4
1H,1H,2H,2H-Perfluorooctanesulfonic Acid	6:2FTS	27619-97-2
1H,1H,2H,2H-Perfluorohexanesulfonic Acid	4:2FTS	757124-72-4
PERFLUOROALKANE SULFONAMIDES (FASAs)		
Perfluorooctanesulfonamide	FOSA	754-91-6
N-Ethyl Perfluorooctane Sulfonamide	NEtFOSA	4151-50-2
N-Methyl Perfluorooctane Sulfonamide	NMeFOSA	31506-32-8
PERFLUOROALKANE SULFONYL SUBSTANCES		
N-Ethyl Perfluorooctanesulfonamido Ethanol	NEtFOSE	1691-99-2
N-Methyl Perfluorooctanesulfonamido Ethanol	NMeFOSE	24448-09-7
N-Ethyl Perfluorooctanesulfonamidoacetic Acid	NEtFOSAA	2991-50-6
N-Methyl Perfluorooctanesulfonamidoacetic Acid	NMeFOSAA	2355-31-9
PER- and POLYFLUOROALKYL ETHER CARBOXYLIC ACIDS		
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-Propanoic Acid	HFPO-DA	13252-13-6
4,8-Dioxa-3h-Perfluorononanoic Acid	ADONA	919005-14-4
CHLORO-PERFLUOROALKYL SULFONIC ACIDS		
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	11CI-PF3OUdS	763051-92-9
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid	9CI-PF3ONS	756426-58-1
PERFLUOROETHER SULFONIC ACIDS (PFESAs)		
Perfluoro(2-Ethoxyethane)Sulfonic Acid	PFEESA	113507-82-7
PERFLUOROETHER/POLYETHER CARBOXYLIC ACIDS (PFPCAs)		
Perfluoro-3-Methoxypropanoic Acid	PFMPA	377-73-1
Perfluoro-4-Methoxybutanoic Acid	PFMBA	863090-89-5
Nonafluoro-3,6-Dioxaheptanoic Acid	NFDHA	151772-58-6

Project Name: Lab Number: BARNSTABLE AIRPORT L2039248 **Project Number: Report Date:** 14105 09/23/20

GLOSSARY

Acronyms

EDL

EMPC

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

> - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the RPD precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: DU Report with 'J' Qualifiers

Project Name:BARNSTABLE AIRPORTLab Number:L2039248Project Number:14105Report Date:09/23/20

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.

Report Format: DU Report with 'J' Qualifiers

Project Name:BARNSTABLE AIRPORTLab Number:L2039248Project Number:14105Report Date:09/23/20

Data Qualifiers

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- \boldsymbol{R} Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Project Name: BARNSTABLE AIRPORT Lab Number: L2039248
Project Number: 14105 Report Date: 09/23/20

REFERENCES

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS) using Isotope Dilution. Alpha SOP 23528.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 17

Published Date: 4/28/2020 9:42:21 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-

Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

EPA TO-12 Non-methane organics

EPA 3C Fixed gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

														•	3611d1_140.03202013.14
Διρна	CHAIN O	FC	USTO	DY	PAGE	of \	D:	ate Rec'd	l in La	b: 0	113/2	Ь		ALP	HA Job#: L2039248
WESTBORO, MA TEL 508 898-9220	MANSFIELD, MA	Proj	ect Informa	ition			R	eport In	form	ation -	Data De	liverabl	-	-	ng Information
FAX 508-898-9193	TEL 508-822-9300 FAX: 508-822-3288	Proje	ct Name: Box	nStoble	Airp	OFF		FAX	2100	DEN	_				STATE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN T
Client Informat	ion	Proje	ct Location:	Aug.	are k	2010	- 1	ADEX			1 Deliver	ables	-	J San	ne as Client info PO#:
Client Horde	Witten Group	Proje	ct#: 141	DE IN	112, 1	111	Re	gulatory	/ Req	uireme	nts/Rep	ort Lim	its	1	200
Address QD (witten Group			Section 1	- 10 0			te /Fed F				Griteria	10	-	123
Sandwin	n MA 02563	ALPH	ot Manager: V	sry ar	J M	0320									
Phone: (509	0)833-6600	CHARLES	n-Around Ti			-				- 1				1	-
ax.	07 033 0000	Turr	i-Around II	me		-									
mail: hance	Coalmeria a line	Star	ndard [RUSH	continue d pro	-gopmendt)									
Dmus	sacharsleywithen a	Date	Due:		Time:			00	/	17	77	1	11	1	111
a Triese samples no	ave been previously analyzed by Alpha Specific Requirements/Com			face by			1	200		1	//	11	1	10	SAMPLE HANDLING
, reject t	Produite inequirements/Comi	nems/	Detection L	imits:			ANA	181-150 mg	1	1		11	11	1	Filtration
							प	3	/		1.1	1	11	1	☐ Done ☐ Not needed
							1/	N.	1	1	11	11		//	Lab to do Preservation
ALPHA Lab ID (Lab Use Only)	Sample ID		Colle	ection	Sample	Sampler's	1/4	3	1	1	/ /	11	11	/	Lab to do
		(5)	Date	Time	Matrix	Initials	124	1	1	11	11		11	1	Sample Specific Comments
9346-21	110.11	(B)	9/17/20	13:15	Soil	SB	1								
-03	Allo		9/17/20	12:51	soil	SB	1								
-0%	HW-P(m) [8-1	EG	9/18/20			88	1						+	1	
-04	HW-P(m) (18-	207	9/18/20			SB		-		-	++		+	-	
	diritan so.	7	111020	7104	8011	00	V		-		++	44			
			-												
												++			
						D. A. Maria									
						iner Type									Please print clearly, legibly and com-
		Relingu	ished By:	_		servative			1	1					pletely. Samples can not be logged in and turnaround time clock will not
	tarak	Bal	tett			71me		Re	ceive	By:	N	D	ate/Time		start until any ambiguities are resolve All samples submitted are subject to
M ND: 01-01 (rev. 14-0C	T-OTS Sheet	as he	an		7/01/	k 173	//	un	111	0	9	Olice	6	736	Alpha's Terms and Conditions
ge 38 of 38	cu	u	me		1/8/	2 sair	·	1	YD.		_	9/19	Bono	1 14	See reverse side.

Construction Worker Short Form

Method 3 Risk Assessment for Chemicals in Soil - Construction Worker Shortform 2012 (sf12cw)

Index

Tab	_	
EPCs	Table CW-1:	Select chemicals and enter Exposure Point Concentrations (EPCs). Estimated risks are shown to the right.
C Eq	Table CW-2:	Equations to calculate cancer risks
NC Eq	Table CW-3:	Equations to calculate noncancer risks
Exp	Table CW-4:	Definitions and exposure factors
Chem	Table CW-5:	Chemical-specific data
Cyanide	Table CW-6:	Cyanide Calculations

Spreadsheets designed by Andrew Friedmann, MassDEP

Questions and Comments may be addressed to:

Lydia Thompson

Massachusetts Department of Environmental Protection

Office of Research and Standards

One Winter Street Boston, MA 02108 USA Telephone: (617) 556-1165 Fax: (617) 556-1006

Email: Lydia.Thompson@state.ma.us

1 of 8 Sheet: Index

Construction Worker - Soil: Table CW-1
Exposure Point Concentration (EPC) and Risk
Based on Construction Worker 18-25 years of age

ShortForm Version 10-12 Vlookup Version v0315

Do not insert or delete any rows

Click on empty cell below and select OHM using arrow.

ELCR (all chemicals) = HI (all chemicals) = 6.0E-02

Oil or Hazardous	EPC	ELCR	ELCR	ELCR	ELCR		,	Subchronic			
Material (OHM)	(mg/kg)				inhalation	ELCR _{total}	HQ _{ing}	HQ _{derm}	HQ _{inh-GI}	HQ _{inh}	HQ _{total}
		ingestion	dermal	inhalation GI	pulmonary	LLOTtotal					
zzPERFLUORODECANOIC ACID (PFDA)	7.8E-03						1.9E-03	1.9E-03	5.0E-05	1.5E-05	3.9E-03
zzPERFLUOROHEPTANOIC ACID (PFHpA)	1.8E-03						4.4E-04	4.5E-04	1.1E-05	3.4E-06	9.0E-04
zzPERFLUOROHEXANESULFONIC ACID (PFHxS)	2.5E-02						6.2E-03	6.2E-03	1.6E-04	4.7E-05	1.3E-02
zzPERFLUOROOCTANOIC ACID (PFOA)	4.6E-02						1.1E-02	1.1E-02	2.9E-04	8.6E-05	2.3E-02
zzPERFLUOROOCTANESULFONIC ACID (PFOS)	2.9E-02						7.1E-03	7.2E-03	1.9E-04	5.4E-05	1.5E-02
zzPERFLUORONONANOIC ACID (PFNA)	9.6E-03						2.4E-03	2.4E-03	6.1E-05	1.8E-05	4.8E-03

2 of 8 Sheet: EPCs

Construction Worker - Soil: Table CW-2

Equations to Calculate Cancer Risk for Construction Worker

Cancer Risk from Dermal Absorption

ELCR_{derm} = LADD_{derm} * CSF_{oral}

LADD_{derm} =

EPC * SA * AF * RAF_{c-derm} * EF * ED_{derm} * EP * C1

BW * AP_{lifetime}

Vlookup Version v0315

Parameter	Value	Units
CSF	OHM-specific	(mg/kg-day) ⁻¹
LADD	age/OHM-specific	mg/kg-day
FPC	OHM-specific	mg/kg
IR	100	mg/day
RAF _{c-ing}		dimensionless
	OHM-specific	
RAF _{c-derm}	OHM-specific	dimensionless
RAF _{c-inh}	OHM-specific	dimensionless
EF	0.714	event/day
ED _{ing & derm}	1	day/event
ED_inh	0.333	day/event
EP	182	days
C1	1.0E-06	kg/mg
C2	1.0E-09	kg/µg
C3	1440	min/days
C4	1.0E-03	m ³ /L
BW	58.0	kg
AP _(lifetime)	25,550	days
VR_{work}	60	L/min
AF	0.29	mg/cm ^²
SA	3473	cm²/day
RCAF _{inh-gi}	1.5	dimensionless
RCAF _{inh}	0.5	dimensionless
PM ₁₀	60	μg/m³

Construction Worker - Soil: Table CW-3

Equations to Calculate Noncancer Risk for Construction Worker

Noncancer Risk from Ingestion $HQ_{ing} = \frac{ADD_{ing}}{RfD_{oral\text{-subchronic}}}$ $ADD_{ing} = \frac{EPC * IR * RAF_{nc\text{-}ing} * EF * ED_{ing} * EP * C1}{BW * AP_{noncancer}}$

Noncancer Risk from Dermal Absorption
$$HQ_{derm} = \frac{ADD_{derm}}{RfD_{oral-subchronic}}$$

$$ADD_{dermal} = \frac{EPC * SA * AF * RAF_{nc-derm} * EF * ED_{dermal} * EP * C1}{BW * AP_{noncancer}}$$

Noncancer Risk from Particulate Inhalation - Gastrointestinal Absorption
$$HQ_{lnh\text{-}Gl} = \frac{ADD_{inh\text{-}Gl}}{RfD_{oral\text{-}subchronic}}$$

$$ADD_{inh\text{-}Gl} = \frac{EPC*RCAF_{inh\text{-}gi}*PM_{10}*VR_{work}*RAF_{nc\text{-}ing}*EF*ED_{inh}*EP*C2*C3*C4}{BW*AP_{noncancer}}$$

Noncancer Risk from Particulate Inhalation - Pulmonary Absorption
$$HQ_{inh} = \frac{ADD}{RfD_{inhalation-subchronic}}$$

$$ADD_{inh} = \frac{EPC_{soil} * RCAF_{inh} * PM_{10} * VR_{work} * RAF_{nc-inh} * EF * ED_{inh} * EP * C2 * C3 * C4}{BW * AP_{noncancer}}$$

Parameter	Value	Units
RfD	OHM-specific	mg/kg-day
ADD	OHM-specific	mg/kg-day
EPC	OHM-specific	mg/kg
IR	100	mg/day
RAF _{nc-ing}	OHM-specific	dimensionless
RAF _{nc-derm}	OHM-specific	dimensionless
RAF _{nc-inh}	OHM-specific	dimensionless
EF	0.714	event/day
ED _{ing & derm}	1	day/event
ED _{inh}	0.333	day/event
EP	182	days
C1	1.0E-06	kg/mg
C2	1.0E-09	kg/µg
C3	1440	min/days
C4	1.0E-03	m ³ /L
BW	58.0	kg
AP _{noncancer}	182	days
VR _{work}	60	L/min
AF	0.29	mg/cm [∠]
SA	3473	cm²/day
RCAF _{inh-gi}	1.5	dimensionless
RCAF _{inh}	0.5	dimensionless
PM10	60	μg/m³

Vlookup Version v0315

Vlookup Version v0315

Construction Worker - Soil: Table CW-4 Definitions and Exposure Factors

Parameter	Value	Units	Notes
ELCR - Excess Lifetime Cancer Risk	chemical specific	dimensionless	Pathway specific (ing =ingestion, derm=dermal, inh=inhalation)
HI - Hazard Index	chemical specific	dimensionless	Pathway specific (ing =ingestion, derm=dermal, inh=inhalation)
CSF - Cancer Slope Factor	chemical specific	(mg/kg-day) ⁻¹	see Table CW-5.
RfD - Reference Dose	chemical specific	mg/kg-day	see Table CW-5.
LADD - Lifetime Average Daily Dose	chemical specific	mg/kg-day	Pathway specific. See Table CW-2.
ADD - Average Daily Dose	chemical specific	mg/kg-day	Pathway specific. See Table CW-3.
EPC - Exposure Point Concentration	chemical specific	mg/kg	see Table CW-1.
IR - Soil Ingestion Rate	100	mg/day	MADEP. 2002. Technical Update: Calculation of an Enhanced Soil Ingestion Rate. (http://www.mass.gov/dep/ors/orspubs.htm).
RAF _c - Relative Absorption Factor for Cancer Effects	chemical specific	dimensionless	Pathway specific - see Table CW-5.
RAF _{nc} - Relative Absorption Factor for Noncancer Effects	chemical specific	dimensionless	Pathway specific - see Table CW-5.
EF - Exposure Frequency	0.714	event/day	5 events (days) / 7 events (days) in a week; MADEP 1995 Guidance for Disposal Site Risk Characterization pg B-38.
ED _{ing,derm} - Exposure Duration for ingestion or dermal exposure	1	day/event	
ED _{inh} - Exposure Duration for inhalation exposure	0.333	day/event	Represents 8 hours / event.
EP - Exposure Period	182	days	6 months; MADEP 1995 Guidance for Disposal Site Risk Characterization.
BW - Body Weight	58.0	kg	U.S. EPA. 1997. Exposure Factors Handbook. Table 7-7, Females, ages 18 - 25.
AP _(lifetime) - Averaging Period for lifetime	25,550	days	Represents 70 years
AP _(noncancer) - Averaging Period for noncancer	182	days	6 months; MADEP 1995 Guidance for Disposal Site Risk Characterization.
AF - Adherence Factor	0.29	mg/cm ²	MA DEP. 2002 Technical Update: Weighted Skin-Soil Adherence Factors. (http://www.mass.gov/dep/ors/orspubs.htm)
VR _{work} - Ventilation Rate during work (heavy exertion)	60	L/min	Table B-4 MADEP 1995 Guidance for Disposal Site Risk Characterization.
SA - Surface Area	3473	cm ² /day	MADEP. 1995. Guidance for Disposal Site Risk Characterization.
IFAF _{inh-gi} - Ingestion Fraction Adjustment Factor, gastrointestinal	1.5	dimensionless	50th percentile for females. Appendix Table B-2. MADEP 2007. Characterization of Risks Due to Inhalation of Particulates by Construction Workers
IFAF _{inh} - Inhalation Fraction Adjustment Factor, inhalation	0.5	dimensionless	MADEP 2002. Characterization of Risks Due to Inhalation of Particulates by Construction Workers
PM10 - Concentration of PM ₁₀	60	μg/m³	MADEP 1995 Guidance for Disposal Site Risk Characterization pg B-11

Construction Worker - Soil: Table CW-5 Chemical-Specific Data

Vlookup Version v0315

Oil or Hazardous Material	Oral CSF (mg/kg-day) ⁻¹	RAF _{c-ing}	RAF _{c-derm}	RAF _{c-inh}	Oral RfD	Subchronic RAF _{nc-ing}	Subchronic RAF _{nc-derm}	Subchronic RAF _{nc-inh}	Subchronic Inhalation RfD
zzPERFLUORODECANOIC ACID (PFDA)					5.0E-06	1	0.1	1	5.7E-06
zzPERFLUOROHEPTANOIC ACID (PFHpA					5.0E-06	1	0.1	1	5.7E-06
zzPERFLUOROHEXANESULFONIC ACID (5.0E-06	1	0.1	1	5.7E-06
zzPERFLUOROOCTANOIC ACID (PFOA)					5.0E-06	1	0.1	1	5.7E-06
zzPERFLUOROOCTANESULFONIC ACID (5.0E-06	1	0.1	1	5.7E-06
zzPERFLUORONONANOIC ACID (PFNA)					5.0E-06	1	0.1	1	5.7E-06

Construction Worker - Soil: Table CW-6 Cyanide Calculations

The soil cyanide concentration limit set to protect a construction worker against an acute, potentially lethal one-time dose of cyanide from incidental ingestion of contaminated soil is $12,000 \text{ mg/kg}_{\text{soil}}$. This is the concentration of available cyanide in soil below which acute human health effects would not be expected following a one-time exposure. This soil concentration is calculated using the equation below with a one-time soil ingestion estimate of $50 \text{ mg}_{\text{soil}}$ and an available cyanide dose limit of $0.01 \text{ mg/kg}_{\text{body weight}}$.

MassDEP's guidance on evaluating the risk from a one-time cyanide dose considers cyanide's potentially lethal effects as well as information on cyanide metabolism:

Cyanides are detoxified rapidly by the body, and a large acute dose which overwhelms the detoxification mechanism is potentially more toxic than the same dose distributed over a period of hours. (MassDEP *Background Documentation for the Development of an Available Cyanide Benchmark Concentration*, originally dated October 1992, Modified August 1998)

Assessment of a potential one-time dose requires an estimate of the maximum soil concentration the trespasser could contact at any one time. The average soil concentration within a typical exposure area will underestimate the potential one-time dose. Therefore, to assess the acute risk of a one-time potentially lethal dose, the EPC for cyanide should be a conservative estimate of the maximum concentration.

The construction worker soil concentration limit to protect against adverse effects from an acute (one-time) exposure to cyanide is 12,000 mg/kg.

ide
etor
3

Parameter	Value	Units
HQ (Hazard Quotient)	1	(unitless)
Acute Dose Limit	0.01	mg avail. CN/ kg BW
BW (Body Weight) 11-12	58	kg
IR (1-time reasonable max)	50	mg
Conversion Factor	1.0E-06	kg soil / mg soil
RAF	1	(unitless)

The toxicological basis for estimating an allowable one-time dose is documented in MassDEP's 1992 Background Documentation for the Development of an "Available Cyanide" Benchmark Concentration, which is published at: http://www.mass.gov/eea/docs/dep/toxics/stypes/dscyanide.pdf

8 of 8 Sheet: Cyanide

Photographic Documentation of Cap Area

Photo Log- PFAS Mitigation Cap Project

Photo 1: ARFF Building Area prior to construction of PFAS mitigation cap. Typical dust monitoring station is shown in the background.

Photo 2: Excavation of soils within the ARFF Building Area in preparation of subgrade placement and asphalt cap. Excavated soils were transported to the Deployment Area for use in grading and shaping prior to cap placement in that area.

Photo Log- PFAS Mitigation Cap Project

Photo 3: Final placement of subgrade material in ARFF Building Area in preparation of asphalt pavement placement.

Photo 4: Asphalt cap area within the ARFF Building Area.

Photo Log- PFAS Mitigation Cap Project

Photo 5: Deployment Area before placement of ARFF Building Area soils, sand, geomembrane and loam.

Photo 6: Aerial view of geomembrane liner placement in the Deployment Area.

Photo Log- PFAS Mitigation Cap Project

Photo 7: Aerial view of geomembrane liner placement in the Deployment Area.

Photo 8: Placement of the sand buffer layer after completion of Deployment Area cap.