

PHASE I REPORT AND TIER CLASSIFICATION REPORT

Barnstable Municipal Airport Hyannis, Massachusetts

RTN 4-26347

November 2017

Prepared for: Barnstable Municipal Airport 480 Barnstable Road Hyannis, MA 02840

Prepared by: Horsley Witten Group, Inc. 90 Route 6A Sandwich, MA 02563

PHASE I REPORT AND TIER CLASSIFICATION

BARNSTABLE MUNICIPAL AIRPORT HYANNIS, MASSACHUSETTS RELEASE TRACKING NUMBER 4-26347

Table of Contents

1.0	INTRODUCTION
2.0	GENERAL DISPOSAL SITE INFORMATION
3.0	DISPOSAL SITE MAP6
4.0	DISPOSAL SITE HISTORY
5.0	SUBSURFACE INVESTIGATION ACTIVITES COMPLETED TO DATE
6.0	NATURE AND EXTENT OF CONTAMINATION
7.0	MIGRATION PATHWAYS AND EXPOSURE POTENTIAL
8.0	CONCEPTUAL SITE MODEL AND PHASE II SCOPE OF WORK
9.0	TIER CLASSIFICATION
10.0	CONCLUSIONS

FIGURES

- 1 Locus Map
- 2 DEP Priority Resource Map
- 3 PFAS Disposal Site Map
- 4 Groundwater Sampling Results for 1,4-dioxane
- 5 Groundwater Sampling Results for PFAS Compounds
- 6 Soil Sampling Results for PFAS Compounds Deployment Area
- 7- Soil Sampling Results for PFAS Compounds ARFF Building
- 8- Water Table Map
- 9 Hydrogeologic Cross Section

TABLES

- 1 1,4 Dioxane Groundwater Results
- 2 Soil Results
- 3 PFAS Groundwater Results

ATTACHMENTS

- 1 Monitoring Well Logs
- 2 Laboratory Results
- 3 AFFF Information
- 4 Tier Classigication Legal Notice

PHASE I REPORT AND TIER CLASSIFICATION BARNSTABLE MUNICIPAL AIRPORT HYANNIS, MASSACHUSETTS RELEASE TRACKING NUMBER 4-26347

1.0 INTRODUCTION

The Horsley Witten Group, Inc. (HW) has prepared this Phase I Initial Site Investigation Report (Phase I) and Tier Classification on behalf of the Potentially Responsible Party (PRP), the Barnstable Municipal Airport (the Airport) of Hyannis, Massachusetts (Figure 1). The report was prepared in accordance with the Massachusetts Contingency Plan 310 CMR 40.0000 (MCP) on behalf of:

Ms. Katie Servis, Assistant Airport Manager Barnstable Municipal Airport Hyannis, Massachusetts 02601 (508) 775-2020

A Notice of Responsibility (NOR), dated November 10, 2016, was issued to the Airport by the Massachusetts Department of Environmental Protection (DEP). The NOR requested that the Airport conduct additional field investigations to evaluate sources of two types of contaminants at the Airport and on adjacent properties, and to identify potential impacts to public water supply wells operated by the Hyannis Water District at the Mary Dunn and Maher Wellfields.

The NOR specifically requested that the Airport investigate perfluoroalkyl substances (PFAS) including perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) previously detected in groundwater at the Airport and several adjacent properties. DEP also requested further evaluation of 1,4-dioxane previously detected in a monitoring well hydrologically downgradient of the Airport property, on the Maher Wellfield property. Consequently, this Phase I report focuses on these contaminants. For information on past releases and potential contaminants at the Airport, please see RTN 4-0823.

HW, on behalf of the Airport, conducted investigations on these contaminants in the past and provided results to DEP. In July 2015, HW sampled groundwater from seven monitoring wells on and off the Airport property for analysis of 1,4-dioxane. The contaminant was detected in well OW-9DD at a concentration of 0.93 ug/L, above the 0.30 ug/L standard for 1,4-dioxane. This well is located off Airport property, within the Maher Wellfield property, and is screened from 77 to 87 feet below the ground surface. All samples taken from the other wells at the Airport property did not contain 1,4-dioxane above laboratory reporting levels.

Groundwater in the vicinity of historic releases from a floor drain at the former Provincetown Boston Airlines hangar (currently leased to Cape Air) had been known to contain 1,1,1-trichloroethane (1,1,1-TCA). Since 1,1,1-TCA solvent products have been known to potentially contain 1,4-dioxane, the past release of 1,1,1-TCA was investigated as part of this project as a potential source.

In response to August 4, 2016 NOR/ Request for Information (RFI) the Airport contracted with HW to conduct additional groundwater investigations and collect samples for laboratory analysis. As described in the December 2016 Immediate Response Action Plan, these efforts were focused on suspected PFOS and/or PFOA contamination locations on the Airport property based on the understanding of past use or potential release locations. On July 1 and 5, 2016, HW collected samples from six monitoring wells and submitted samples for laboratory analysis for the presence of PFOS and PFOA. These compounds were detected above laboratory reporting limits in each of the wells tested. At monitoring wells HW-3 and HW-5, groundwater concentrations were 0.084 and 0.12 ug/L respectively, above the EPA health advisory limit of 0.07 ug/L. Because of the extremely low detection requirements, HW collected confirmatory samples from these two wells. Results showed 0.16 ug/l in HW-3 and 0.12 ug/L in HW-5. The concentrations detected in all the other wells were below the standard. It should be noted that these compounds were also detected in well HW-1, located at the upgradient, western boundary of the Airport thereby likely to be emanating in part from an off-Airport source.

In accordance with the MCP, HW prepared an Immediate Response Action Plan in December 2016, the most recent status report for which was dated October, 2017.

This Phase I has been prepared in accordance with 310 CMR 40.0480, and the Response Action Performance Standards established in 310 CMR 40.0191. The appropriate Massachusetts Department of Environmental Protection (DEP) Bureau of Waste Site Cleanup (BWSC) forms (BWSC 107 and 108) accompanying this Phase I and Tier Classification have been generated through DEP's electronic file submission system (eDEP). In accordance with 310 CMR 40.1403(3)e, written notification of the Phase I and Tier classification and a summary of findings and statement of conclusions will also be provided to the Barnstable Town Manager and Board of Health and an advertisement in the local newspaper will announce the availability of the report. The Phase I report has been compiled following the general requirements and format established in 310 CMR 40.0483 *Content of Phase I Report*.

2.0 GENERAL DISPOSAL SITE INFORMATION

2.1 DEP Release Tracking Number

The DEP Release Tracking Number assigned is 4-26347.

2.2 Disposal Site Location

The disposal sites described in this Phase 1 are located at the overall Airport address of 480 Barnstable Road, Hyannis, Massachusetts, 02601.

World Geodetic System 1984:Latitude (Y):41° 39' 35.61" NorthLongitude (X):70° 17' 4.17" EastUniversal Transverse Mercator (UTM) NAD 1983Northing (Y):4612812Easting (X):393056

2.3 DEP Priority Resource Locus Map

A Disposal Site Locus Map based on a United States Geological Survey (USGS) topographic map was generated by the Massachusetts DEP BWSC Priority Resource Map online map tool (<u>http://www.mass.gov/eea/agencies/massdep/service/massgis-massdep-priority-resource-maps.html</u>). The Priority Resource Map depicts the 500 foot and 1/2 mile radii from the Airport (Figure 2).

2.4 Estimate of On-Site Workers at the Disposal Site

According to the Site owner and operator, the average number of on-site workers at the Airport varies depending upon airfield activities. Airport and tenant workers include office professionals, management, maintenance, FAA tower employees, and other temporary contractors that perform various ongoing maintenance, inspections, and other general activities. There are approximately 25 workers directly employed by the Airport. Tenant workers at the various businesses (e.g., Hertz, Cape Air, Rectrix, FAA) total approximately 400 people at any one day.

2.5 Estimate of Residential Population

According to Massachusetts Geographic Information Systems (MassGIS) datalayer from the 2010 United States Census, approximately 2,500 people reside within 1/2 mile of the Airport.

2.6 General Description of Surrounding Land Uses

The Airport is located on Barnstable Road, within a densely developed area of Hyannis, Massachusetts. Commercial properties including general offices, retail establishments, and commercial businesses, as well as residential homes, abut the Airport.

2.7 Public Institutions

A general reconnaissance of the properties located within 500 feet of the Airport has not identified any Institutions, defined in 310 CMR 40.006 as "any public or privately owned hospital, health care facility, orphanage, nursing home, convalescent home, educational facility, or correctional facility, where such facility in whole or in part provides overnight housing."

2.8 Natural Resource Areas

According to MassGIS and the DEP BWSC Priority Resource Map online map tool, there are several surface waters on or within 500 feet of the Airport (Figure 2).

The Airport is located within several DEP designated zones of contribution (Zone 2) to municipal supply wells, and within an Environmental Protection Agency (EPA) Medium-Yield Sole Source Aquifer. Due to dense development of the surrounding urban areas, the Airport, and a large portion of the Zone 2 that it is located within, is also designated as Non-Potential Drinking Water Source Area (NPDWSA).

In accordance with 310 CMR 40.0932(4), disposal sites located within a Current Drinking Water Source Area (Zone 2) are designated as GW-1. The MCP Method 1 GW-1 cleanup standards would therefore be applicable to the Site, and are referenced throughout. The Airport and downgradient residential properties were confirmed to have municipally supplied drinking water. No private drinking water wells at the Airport or downgradient properties were identified by HW or the Town of Barnstable Department of Public Works, Water Supply Division, and the Town of Yarmouth Health Department, as part of the IRA actions and during the Phase I investigation.

According to MassGIS and the DEP BWSC Priority Resource Map online map tool, there are no Areas of Critical Environmental Concern; local, state, or federal protected open space; fish habitats; and, habitats of Species of Special Concern or Threatened or Endangered Species within 500 feet of the Airport. There is an area including Rare or Endangered species located approximately 500 feet north of the Airport boundary near Mary Dunn Pond.

3.0 DISPOSAL SITE MAP

In accordance with 310 CMR 40.0483(1)b, a disposal site map including the Airport parcels generally identified as 480 Barnstable Road property and neighboring parcels is included as Figure 3. This identifies the two known sites with PFAS compounds in soil and a third potential site; the 1991 drill location.

4.0 DISPOSAL SITE HISTORY

4.1 Site Ownership and Improvements

The Airport is located in Hyannis, Massachusetts, and provides scheduled airline service and general aviation services and other aviation related activities. The Airport is currently owned by the Town of Barnstable and is operated through the Barnstable Municipal Airport Commission (BMAC). The Airport began as a private airport consisting of a single grass runway before being given to the Town of Barnstable in the 1930's. During the 1940's, the U.S. Navy used the Airport and expanded the airfield to include three runways. In 1946, the Airport was returned to use as a two-runway municipal airport (each runway has a designation at each end, being 15-33 and 6-24).

The Airport is comprised of approximately 645 acres of land, with approximately 140 acres that are impervious (e.g. paved areas such as parking lots, runways, concrete walkways, and building rooftops). The Airport's structures include the main terminal and the Air Traffic Control Tower (ATCT), which are located south of the runways and taxiways, as well as several hangars used for general aviation services. The terminal is includes office space for Airport employees, ticketing counters for airlines, service counters for auto rental agencies, a restaurant, a retail/art store, space for the TSA, and a general lobby and passenger queuing area. The Airport is located in an area of Hyannis zoned for Business and Industrial uses.

The general aviation facilities are managed primarily by private companies who lease portions of the Airport property. Daily operations typically include a variety of activities from private aircraft flights and charter services, flight school operations, aircraft maintenance and storage, refueling of aircraft, and other aviation related actions. The Airport provides vehicle parking at a main lot located directly in front of the terminal as well as at other locations proximate to hangars across the airport. The Airport is currently served by electric power, telephone, natural gas, municipal sewer and private septic systems (for several hangars on the north end of the East Ramp area), a stormwater conveyance system including several leaching catch basins, and municipal drinking water. The stormwater conveyance systems generally run along the runways, taxiways, and parking areas and direct stormwater to several outfall pipes and infiltration basins.

4.2 Hazardous Materials Use and Storage

During its normal daily operations the Airport accepts, stores, handles and transfers a variety of oil and or hazardous materials (OHM), similar to most other airports and similar industries. Daily operations include refueling and maintenance of vehicles and aircraft that require a certain level of OHM storage and use. Over the past 20 years, it has been a priority of the Airport management to implement many OHM use reductions, improvements, and storage and training guidelines, as well as infrastructure

improvements that continue to reduce the risk of impacts to environmental receptors at the Airport. Additional details related to this have been previously reported under RTN 4-0823.

Additionally, the Airport Rescue and Fire Fighting Building (ARFF) building is where the emergency response vehicles and Aircraft Fire Fighting Foam (AFFF) and all fire fighting apparatus is stored. This is the only location where AFFF is stored at the Airport. Airport personnel are trained first responders and use and maintain the equipment in compliance with local, state and federal regulations.

The following data has been collected in response to DEP's NOR and RFI to further clarify the type, use, and storage of AFFF at the Airport.

- Annual testing per Federal Aviation Administration (FAA) regulations is required to ensure that there is the appropriate AFFF to water mixture. Historically, the test consists of essentially shooting the mixture of AFFF from the fire rescue vehicle at a small square target. Adjustments are made, if needed, to allow for proper spray coverage.
 - Approximately 80 gallons of AFFF is used annually to conduct the test.
 - All testing has been conducted in the same location on the Airport for the past 16 plus years (Drill / Deployment area).
- All firefighters must attend annual training which occurs off-site at various FAA approved training facilities such as Logan Airport or Concord New Hampshire.
- Tri-Annual Drill Dates:
 - With the exception of the drill in 1991 as shown on the attached figures, all drills occur on the East Ramp at the Drill / Deployment area
 - o July 17, 1991
 - o Nov. 16, 1994
 - o Nov. 17, 1997
 - o Nov. 2, 2000
 - o Oct. 18, 2003
 - o Oct. 25, 2006
 - o Oct. 22, 2009
 - o Oct. 11, 2012
 - Oct. 28, 2015 (No AFFF used during this drill just water)
- FAA regulations require a supply of AFFF on hand to resupply two trucks. This is approximately 405 gallons. Current supply stored in the ARFF building is as follows:
 - o 265 3% Chemguard C301 MS 265 gallon tote
 - o 105 3% Chemguard C301 MS 21- 5 gallon pails
 - o 20 3% Chemguard C306-MS-C 10- 5 gallon pails
- The Airport has 185 gallons of foam that will be removed by Global Remediation and is no longer useable for our operations as the expiration date has passed.

- 3% Chemguard C301 MS 3- 5 gallon pails of old foam.
- 3% Ansulite AFFF 1- 5 gallon pail of old foam.
- o 3% Chemguard C301 MS 3-55 gallon drums of old foam.
- To the best of the Airport management's knowledge, no foam has been donated, sold, or otherwise given to another entity.

4.3 Site Utilities

The Airport and its various buildings, terminal, hangars, include connections to municipal water, sewer, natural gas, cable, fiber, and stormwater facilities. Several hangars along the northern most section of the east ramp have on-site septic systems. The Airport has an overall Stormwater Pollution Prevention Plan (SWPPP) and map that is updated regularly. Stormwater runoff either infiltrates directly into the sandy soils, or is conveyed to other infiltration treatment units (e.g., Vortechs, raingardens, naturalized depressions, leaching catch basins). The SWPPP has been prepared in accordance with the requirements for the Environmental Protection Agency's (EPA) National Pollutant Discharge Elimination System (NPDES) Stormwater Multi-Sector General Permit (MSGP). As changes to runways, taxiways, and other infrastructure are made, the SWPPP is updated, reviewed, and approved by Airport Management.

4.4 Wastewater Disposal

The previous airport terminal was connected to town sewer for decades, prior to its demolition. The current terminal building has always been connected to Town sewer. The ARFF building has also been connected to town sewer since its construction in 1998. All wastewater generated at from these and most of the hangars at the Airport is discharged to the Town of Barnstable Water Pollution Control Facility (WPCF) located on Bearse's Way, Hyannis, Massachusetts.

4.5 Release History

The boundaries of the disposal Sites at the Airport related to PFAS compounds are identified on Figure 3. 1,4-dioxane has not been detected in groundwater underneath the Airport.

Personnel working at the Airport since 1980 were consulted to determine when AFFF use occurred during an actual aircraft accident and only two instances were identified. Please note that AFFF is NOT used unless there is a spark of fire. The majority of accidents do not result in the use of AFFF.

- 1981 crash of a Beech 18 aircraft east of runway 24 between Willow Street and the Airport.
- 2016 crash of a Cirrus aircraft in the parking lot of the rental car facility west of the terminal building. Approximately 10 gallons of AFFF concentrate was used

during the crash response. 100% of this AFFF liquid was contained within a solid bottom manhole and removed during response actions.

The following is a general summary of AFFF use at the Airport. After research regarding the use of AFFF at the Airport, it was determined that all drills and testing are conducted in the same area of the Airport, on the east ramp referred to as the deployment area (Figure 3). This includes annual fire fighting training, as well as regular testing of foam dispensing equipment conducted to comply with specific FAA requirements.

Based on this understanding, a proposed investigation plan was submitted for approval in response to the NOR. Subsequently, a meeting was held by DEP at the Airport that included other stakeholders including the Barnstable Department of Public Works, the Hyannis Water District, and Barnstable County representatives (representing the Fire Training Academy), Airport management and its representatives. At the meeting, specific areas of AFFF use were discussed, a sampling program was planned, and IRA plans were coordinated between the Airport and Fire Training Academy including sampling locations, type of analysis, groundwater modeling, goals and next steps.

Following this meeting, HW finalized the plans for well installation and soil and groundwater sampling. Monitoring wells were installed, groundwater and soil samples have been collected and analyzed, and results indicated PFAS in both groundwater and soil in two areas further described in this report.

4.6 Environmental Permits and Compliance History

The Airport has been a "release site" under RTN 4-0823 since the mid 1990's. There have been a number of releases that were combined under that RTN to coordinate and consolidate cleanup records. The Airport is designated as a very Small Quantity Generator (VSQG) of hazardous materials in accordance with Massachusetts Hazardous Waste Generator Regulations 310 CMR 30.0000, and is designated as Generator ID MAD019412147. No Resource Conservation and Recovery Act (RCRA) permits are associated with the Airport. A National Pollutant Discharge Elimination System (NPDES) permit (MAR053164) has been issued for the Airport as it discharges stormwater to waters of the US. Included are tables highlighting the quantities purchased and the approximate volume of AFFF concentrate used for training, drills, and FAA required testing, and the quantity stockpiled per FAA regulations for the past 17 years.

5.0 SUBSURFACE INVESTIGATION ACTIVITES COMPLETED TO DATE

HW completed a number of surface and subsurface investigative actions of the past year to determine the presence or absence of the contaminants of concern at the Airport, as well as at off-Airport properties. Please refer to the attached tables showing specific laboratory results for 1,4-dioxane and PFAS analysis in soil and groundwater. Figures 4 and 5 show sampling locations and results for groundwater testing of 1,4-dioxane and PFAS compounds respectively. Figures 6 and 7 provide the details on soil sampling for PFAS compounds at the deployment area and ARFF building locations. The field work conducted to date includes the following activities:

5.1 1,4-Dioxane

• Ten groundwater samples were collected in April 2017 and analyzed by ESS laboratory for the presence of 1,4-dioxane using Method 8270 SIMS (Figure 4). Wells were sampled from locations hydrologically upgradient of the Airport, at the Airport's North Ramp, along the path of groundwater flow direction from the North Ramp towards the Maher Wells, and downgradient of and off the Airport property at the Maher Wellfield. The contaminant was detected at the Maher Wellfield in monitoring well OW-9DD at a concentration of 0.93 ug/L, above the 0.30 ug/L standard for 1,4-dioxane. However, samples taken from monitoring wells at the Airport did not contain 1,4-dioxane above laboratory reporting levels.

5.2 PFAS Compounds

- Groundwater monitoring wells were installed at six locations iin April 2017: in the vicinity of potential sources of PFOA at the Airport Rescue and Fire Fighting (ARFF) Building, at the deployment area and in upgradient locations to evaluate potential off site sources of PFAS (and 1,4-dioxane). Figure 5 provide the monitoring well locations and associated results used in the analysis to date.
- Groundwater samples for PFAS were collected on April 5-7 and April 11, 2017. Additional groundwater samples and one surface water sample were collected for analysis of PFAS on June 20, 2017.
- An initial round of three soil samples were taken on December 6, 2016 as reported in the first status report. One sample was taken from each location where it was determined that aircraft fire fighting foam (AFFF) had been used at the Airport, including the site of a single training event in 1991 (in previous IRA reports, this location had erroneously been stated to be a crash site), the deployment area and adjacent to the ARFF building (See Figures 3, 6 and 7).
- A second round of soil samples was taken on June 20, 2017 adjacent to the ARFF building and within the deployment area to begin to determine the extent of PFAS within the surface soils. Based on the results of these analyses, a third round of samples from these two locations were collected on September 26, 2017. The third round of sampling was designed to further map the extent of PFAS in soils both horizontally and vertically, with samples taken at the ground surface and at two and four feet below grade (Figures 6 and 7).

- In October, 2017, three composite soil samples were taken from piles of sediment and topsoil associated with the redevelopment of Runway 15/33 (Figure 3). These piles were located on Airport property at the site of the former Mildred's Restaurant and were analyzed for PFAS compounds to evaluate if sediment removed from the airport as part of this redevelopment contained PFAS.
- On October 26, 2017, ten additional PFAS samples were taken to evaluate background conditions in surficial soils on the Airport and in nearby locations in Hyannis. Refer to the Conceptual Site Model for additional details.
- Samples of AFFF have also been analyzed for PFAS compounds to evaluate the foam previously used at the Airport and that the foam that is currently in use, which per manufactures specifications should have reduced concentrations of PFAS compounds.

Soil and Groundwater samples were collected in accordance with the Massachusetts Department of Environmental Protection (DEP) Guidance on Sampling and Analysis for PFAS at Disposal Sites Regulated under the MCP, dated January 2017. A submersible pump was utilized to develop each monitoring well prior to sample collection. During well development, a properly calibrated InSitu smarTroll MP multi-parameter meter was utilized to measure temperature, pH, conductivity, DO, and oxidation reduction potential. Samples, including the trip and equipment blanks were submitted to ESS Laboratory, Cranston, Rhode Island for 1,4-dioxane analyses and to Maxxam Laboratory for PFAS analysis. Trip blanks and equipment rinse samples were collected and analyzed for PFAS compounds along with the monitoring well samples.

Soil samples were taken either directly into the sampling jar at the ground surface, or by using a hand auger that was decontaminated using Liquinox, and rinsed using Type II De-ionized water between each sample. Each boring was advanced to just above the desired depth of sample then the auger was decontaminated and rinsed again prior to sample collection, in order to minimize, to the greatest extent possible, cross contamination between samples/intervals. Each step was repeated in between each interval of sampling. Samples were collected by either shaking the sample directly from the hand auger into the bottle, or, if necessary, using a gloved hand to remove the sample from bottom of the auger and placing directly into bottle. A separate set of gloves was used for each sample.

6.0 NATURE AND EXTENT OF CONTAMINATION

Assessment activities performed by the Airport have identified 1,4-dioxane in groundwater at concentrations above the applicable MCP GW-1 standards at the Maher

well field property to the southeast of the Airport (Figure 4). No 1,4-dioxane has been detected on Airport property. The source of the 1,4-dioxane at the Maher well field could potentially be associated with a former Dichlorodifluoromethane (Freon) release at the Packaging Industries site upgradient of the Airport and further investigation of this possibility is planned as part of the Phase II assessment.

PFAS compounds have been identified in soil at the two release sites at the airport; at the deployment area and adjacent to the ARFF building. As explained further in the conceptual site model discussion, background testing and SPLP leaching tests of PFAS compounds in soil are underway to evaluate existing conditions outside the two known sites. PFAS compounds were detected at a depth of approximately 80 feet below the water table at the Maher well field. The potential source of this contamination may be the Barnstable Fire Training Academy upgradient of the Airport. PFOS/PFOA testing in shallow groundwater at the deployment area and ARFF building also identified concentrations slightly above the 0.070 ugL standard. This contamination is likely associated with the releases to soil in these areas. Further work in Phase II is needed to provide greater clarity to the extent of soil and groundwater contamination associated with these two sites.

7.0 MIGRATION PATHWAYS AND EXPOSURE POTENTIAL

In accordance with 310 CMR 40.0483(f), Phase I reports shall describe and evaluate known and potential contaminant migration pathways and exposure points, to the extent that such information is known.

The primary concern with the PFAS compounds is exposure through drinking water from foam deposited on the ground surface that migrates downward to groundwater and flows towards the Maher well field (Figure 8). The concentrations in soil that would create an exposure risk for people at the airport are significantly higher than the concentrations detected in soil at the two disposal site areas.

Past work identifying groundwater flow direction within and surrounding the Airport has shown a general flow from northeast to southwest along the Airport (Figure 8). As you move towards the east side of the Airport property and further off the Airport to the east, flow tends to move north to south. Groundwater below the northwest corner of the airport adjacent to Independence Drive may flow towards the Mary Dunn Wellfield. Further groundwater flow and modeling analysis needed to document groundwater flow in this area. Based on the depth and identified migration of the contaminant plume in groundwater and uniform subsurface geology, preferential flow pathways along subsurface utilities or unconsolidated sediments (i.e. gravel layers, fractured bedrock) are not expected to occur. The Site is located within a Current Drinking Water Source Areas, designated as Zone 2's to various public drinking water supply wells include the Maher wellfield, located southeast of the Airport.

8.0 CONCEPTUAL SITE MODEL AND PHASE II SCOPE OF WORK

Assessment activities conducted to date have been completed for the IRA and this Phase 1 Report. Data collected to date provides initial information to develop a Conceptual Site Model (CSM) for planning a Phase II Comprehensive Site Assessment (CSA) in accordance with 310 CMR 40.0830. The Tier Classification submittal criteria require the preparation of a Phase II CSA scope of work or conceptual scope or work. The Phase II scope of work is provided below, with each compound addressed individually and each site for PFAS investigation discussed separately.

8.1 Conceptual Site Model

The purpose of this investigation is to evaluate the nature and extent of the release(s) including potential sources of 1,4-dioxane and PFAS compounds and risks including potential impacts to groundwater quality in the vicinity of the Airport. Soil contamination identified in source areas also presents a potential exposure point that requires risk evaluation. The potential exposure points for groundwater impacts are the public water supply wells operated at the Maher wellfield by the Hyannis Water District.

1,4-dioxane has not been detected in groundwater on the Airport property. It has only been found on the Maher wellfield property at the base on the aquifer, approximately 80 feet below the water table.

PFAS compounds have been detected at elevated concentrations in two areas; the deployment area and adjacent to the ARFF building. Concentrations of PFOS/PFOA in shallow groundwater below these two locations exceed the 0.07 ug/L standard for PFOS/PFOA. Samples collected from the deep wells on the Maher wellfield exceed the standard as well. This deep contamination may be associated with the Barnstable Fire Training Academy as shallow groundwater below the Airport's deployment area and ARFF building is not likely to migrate to the depth where PFOS/PFOA was detected at the Maher well field. Further hydrogeologic analysis of this issue will be conducted as part of the Phase II investigations.

Sampling of a third potential AFFF site, where training was conducted once in 1991, indicated that PFOS/PFOA was present, but at much lower concentration than detected at the other two Airport sites. Samples collected from other locations at the Airport and in nearby locations off the Airport property were submitted for laboratory analysis to assess background concentrations. Sample results are expected in mid-late November 2017. The results of these background samples will be used to evaluate the PFOS concentrations in soil at the 1991 training site.

<u>1,4-Dioxane</u>

The sampling of 1,4-dioxane to date was designed to evaluate if the presence of this contaminant in the vicinity of the Maher wellfield was associated with the former solvent plume that originated at the north ramp of the Airport. Laboratory results of samples collected from wells located within the flow pathway of this plume did not show the presence of any 1,4-dioxane (Figures 4 and 9). This includes wells selected to match how the plume would have migrated deeper into the aquifer as it moved downgradient.

1,4-dioxane was only found in samples collected from deep wells (OW-9DD, OW-18D and OW-19D) on top of a clay layer at the base of the aquifer on the Maher well field property (Figures 4 and 9). 1,4-dioxane was not detected in samples taken from monitoring wells on the Airport. A potential source of 1,4-dioxane is the former Freon plume that originated at the Packaging Industries site, upgradient of the Airport. The plume from this release flowed across the Airport and was traced to the Maher wellfield in past investigations. The installation of an additional deep well in the runway safety area, upgradient of the Maher wellfield, will help evaluate if any 1,4-dioxane is present on the Airport property and continuing to migrate from this upgradient source (Figure 4). Sampling of this new well and the deep wells on the Maher well field property for Freon-11 as well as 1,4-dioxane will help evaluate this second potential source.

PFAS Compounds

Background Concentrations

As mentioned earlier in this report, samples have been collected from ten sites on Airport property and in nearby areas to investigate the background concentrations of PFAS compounds in soil in the vicinity of the Airport. The laboratory results will be available in mid-late November 2017. They will be used to evaluate background conditions relative to the PFAS concentrations detected at the three known potential release areas at the Airport. In addition, an SPLP Leaching test using soils excavated from beside Runway 15/33 is currently being conducted and this will help evaluate the potential impacts to groundwater from PFAS compounds in soil. The SPLP test results are expected in mid-late November.

Deployment Area

AFFF was used during periodic drills and regular compliance training in an area on the East Ramp of the Airport (Figure 6). PFAS from the AFFF remains in soil in this area and is likely leaching to groundwater. During a phased sampling approach, PFAS compounds

were detected in soil samples collected at the ground surface and down to four feet below ground surface, and may extend further down in the soil column. It should be noted that several samples at the surface and at depth did not show the presence of PFAS. However, additional sampling is needed to define the horizontal and vertical extent of PFAS compounds in soil for this site, with sampling planned across the taxiway to the west in open areas to the northeast of the deployment area. Sampling below the East Ramp south of the deployment area is also planned to determine if foam that was sprayed onto the pavement might have washed through cracks into the underlying soil. Finally, sampling of sediment in leaching catch basins in the paved area just to the east of the deployment area is needed to determine if runoff into these structures is a source of groundwater contamination.

Shallow groundwater underneath the deployment area contains PFAS compounds above the 0.70 ug/L groundwater standard. Monitoring wells downgradient of the deployment area will be installed as part of the Phase II analysis to map the downgradient flow of groundwater from the deployment area towards the Maher well field. Multi-level well clusters will also be installed and tested to differentiate contamination from deployment area from that which might be related to the Fire Training Academy. The intent of these clusters is to fully assess the presence or absence of AFFF horizontally and vertically in groundwater.

ARFF Building

The practice of AFFF spraying, deployment, or use next to the ARFF building is not part of normal practice or procedures. However, it is possible that the storage and/or transfer of AFFF or the use of the vehicles General equipment maintenance and cleaning activities outside the ARFF building may have contributed to PFAS contamination in soils to the northeast of the building. Runoff into the catch basins on the north side of the building may have also provided a conduit to groundwater in this area. The Phase II analysis will include additional soil and groundwater testing to confirm the extent of soil contamination, and the impacts to groundwater.

The presence of PFAS in monitoring well HW-3 in what is referred to as "the Steamship Authority parking lot" (Figure 7) may be related to activities adjacent to ARFF in that HW-3 is downgradient of the ARFF building. Additional soil testing in the parking lot may be needed to evaluate the presence or absence of PFAS in the shallow soils in that area.

Additional surface, depth, and catch basin sediment samples will be collected at this site to further define the PFAS boundaries. A monitoring well cluster with shallow, intermediate and deep screens will be installed north of the ARFF building to evaluate groundwater contamination at depth and determine if this site could be a source of the contamination in the deep wells at the Maher wellfield property. Additional shallow monitoring wells will also be installed and sampled for PFAS compounds (Figure 5) at the source area and downgradient to confirm the extent of contamination in groundwater in this area.

1991 Deployment Drill Location

Airport staff identified an area near the west end of Runway 15/33 where a drill using AFFF was conducted (Figure 3). An initial sample from this location contained low concentrations of PFOS and PFOA (0.4 ug/kg and 0.2 ug/kg respectively). The need for further investigation of this area will be determined based on the results of the background testing and the SPLP leaching test for which results are expected in mid-late November. If necessary and appropriate, soil and groundwater assessments will be completed in this area.

Upgradient Boundary of Airport

Although PFAS constituents are widely used, there is no identified source of PFAS near wells HW-1. PFAS in groundwater here could potentially be associated with an off Airport source. Testing of soils adjacent to the monitoring wells, and on the upgradient Kmart Plaza, may help identify the source and extent of contamination in this area of the Airport.

<u>Well HW-19</u>

There is no identified source of the PFAS compounds detected in well HW-19. Sampling of the soils in the vicinity of the well may help determine if the source is local or related to an off Airport release.

Well HW-1 and HW-5

Soil, surface water, and groundwater samples will be taken in the vicinity of these two wells to evaluate potential sources of PFAS compounds impacting groundwater within this area. Additional sample locations upgradient of the Kmart Plaza property will also be evaluated.

When appropriate, a Phase II CSA Completion Report and Risk Evaluation will be prepared to document information obtained as a result of any additional CSA activities and reference and incorporate the elements of this Phase I Report, and may be combined with a Phase III Remedial Action Plan. The Phase II CSA Completion Report and Phase III Remedial Action Plan will be prepared and submitted prior to the initiation of any Comprehensive Response Actions.

9.0 TIER CLASSIFICATION

Tier Classification is required for all disposal sites where Comprehensive Response Actions are necessary, and is intended to establish an appropriate level of DEP oversight for those response actions. The Tier Classification process consists of:

- Completion of a Phase I Initial Site Investigation Report in accordance with 310 CMR 40.0480;
- Comparison of conditions at the disposal site with the Tier I Criteria in 310 CMR 40.0520(2);
- Preparation and filing of a Tier Classification submittal; and
- Public involvement activities.

In accordance with 310 CMR 40.0520(2), the Site is designated as a Tier I disposal site, as assessment activities have identified groundwater contamination at concentrations above MCP RCGW-1 reportable concentrations, and the Site is located within a Zone 2.

Revisions to 310 CMR 40.000 that took effect on April 25, 2014, eliminate the requirement to submit and Initial Tier I Permit Application, Numerical Ranking System score sheet, or Tier I Permit Application fee.

9.1 Response Action Deadlines for Tier I Disposal Sites

Response action deadlines and requirements for Tier I disposal sites are described in 310 CMR 40.0560, and are as follows:

- A Phase II Comprehensive Site Investigation Report and a Phase III Remedial Action Plan shall be submitted within 2 years of the effective date of initial Tier Classification.
- A Phase IV Remedial Implementation Plan shall be submitted within 3 years of the effective date of initial Tier Classification.
- A Response Action Outcome shall be achieved at the Site within 5 years of the effective date of initial Tier Classification.

9.2 Tier Classification Public Notification

Within seven days of filing a Tier Classification Submittal, a legal notice must be published in a local newspaper pursuant to 310 CMR 40.1403(2)b. At least three days prior to public notification, copies of cover letters and notices shall be forwarded to the Barnstable Chief Municipal Officers, Board of Health, and owner of the Maher PWS wells. Copies of all public notices will be provided to DEP in accordance with 310 CMR 40.1403(2)(c)1.

10.0 CONCLUSIONS

This report has been prepared in response to the discovery of groundwater contamination at the Site above applicable MCP RCGW-1 standards, as noticed by DEP in the NOR of November 10, 2016.

At this time, a Response Action Outcome (RAO) cannot be issued for the Site, as contaminant concentrations remain above the GW-1 standards and Massachusetts Drinking Water Standards (310 CMR 22.00). Therefore, in accordance with 310 CMR 40.0800, HW has determined that Comprehensive Response Actions are necessary at the Site. Required Comprehensive Response Actions and associated timelines are described in Section 9.0.

Figures

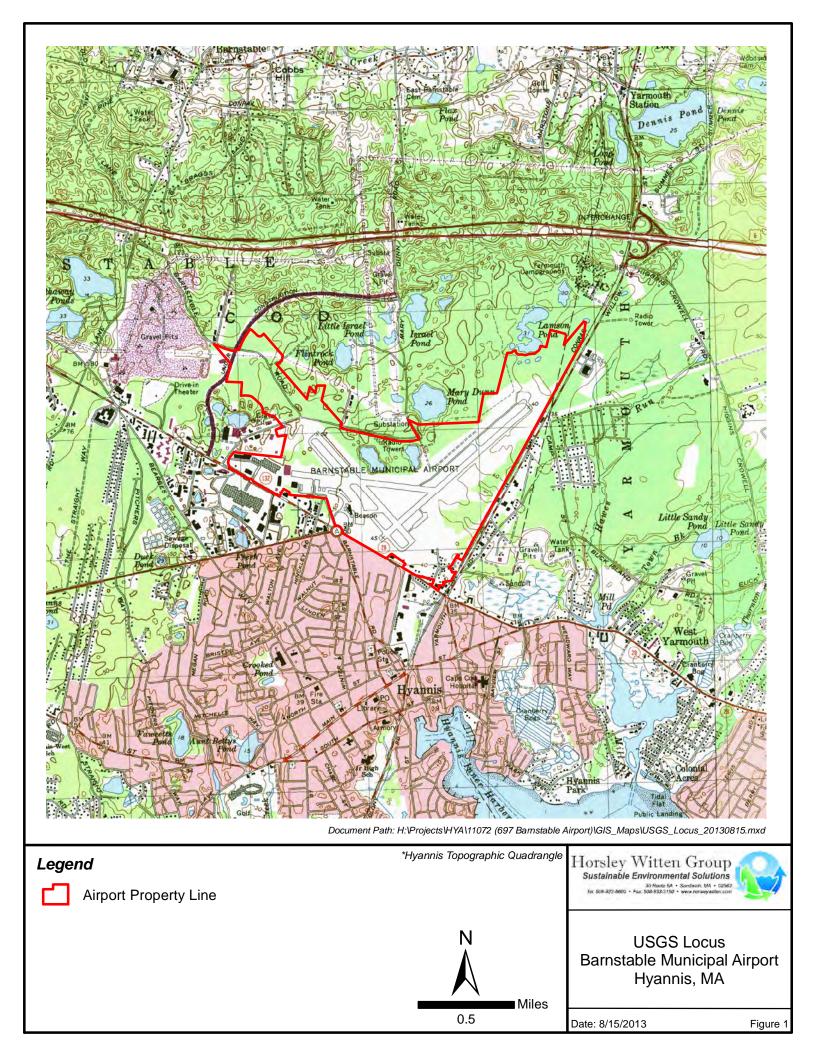


FIGURE 2 - Priority Resource Map

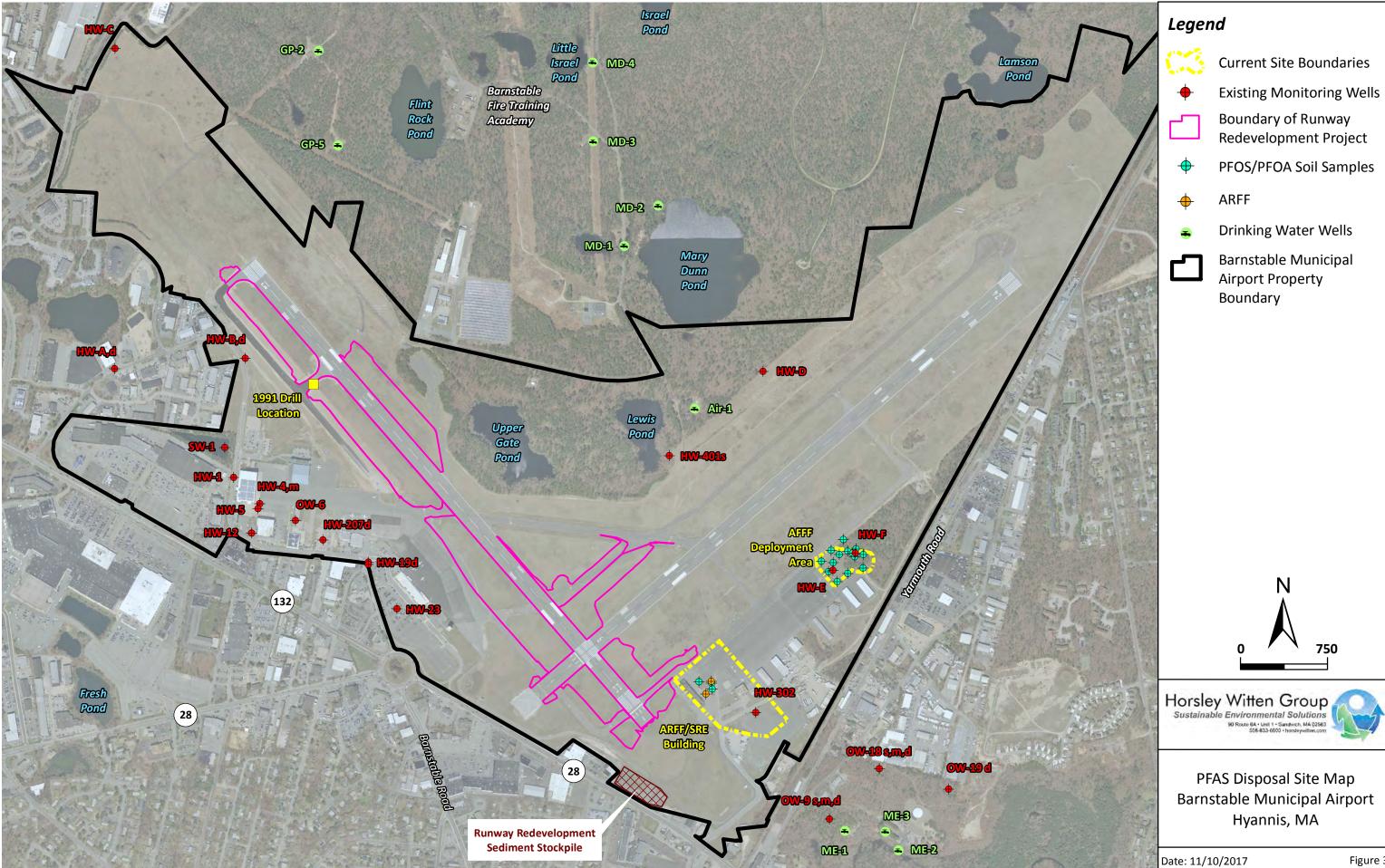
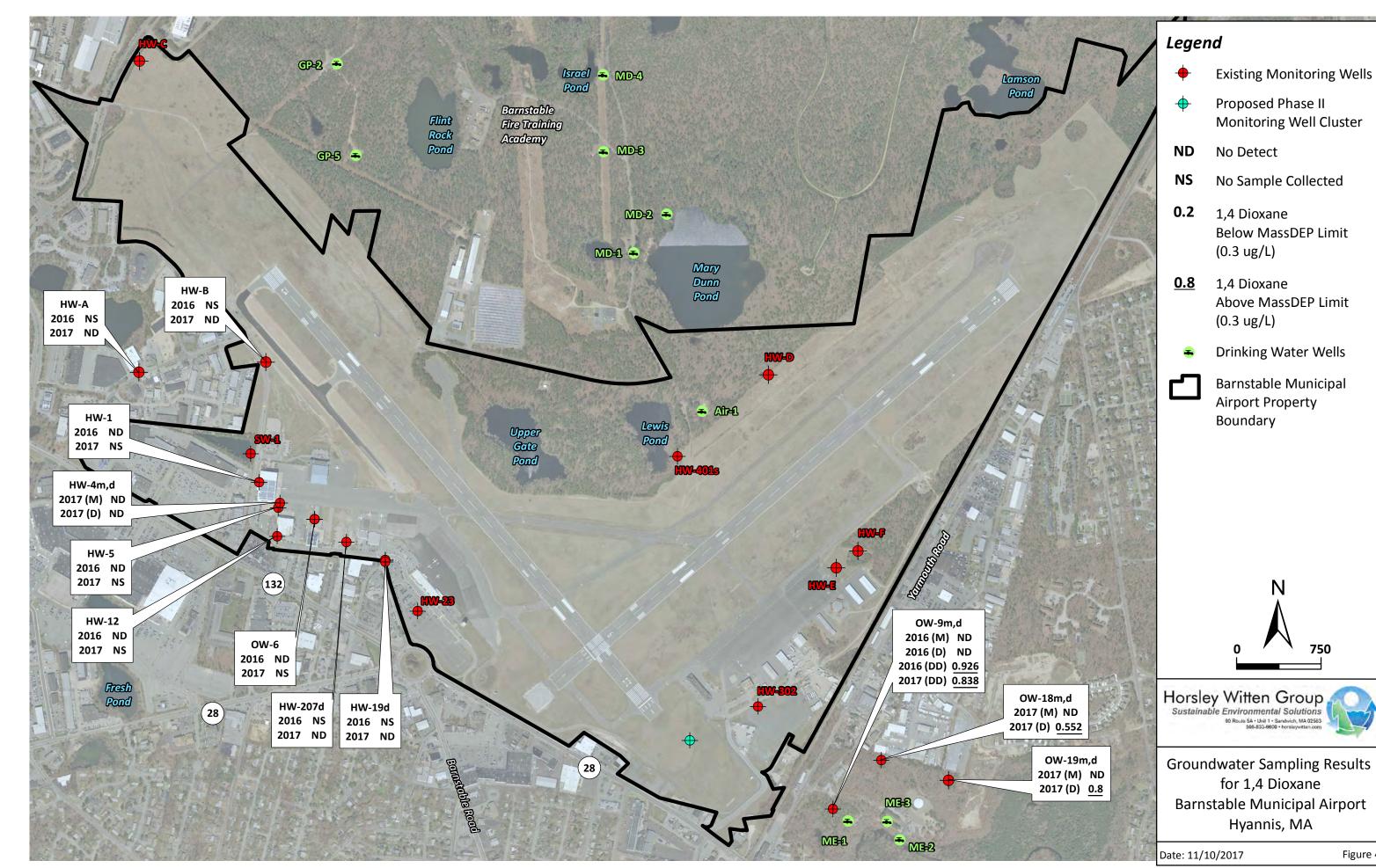
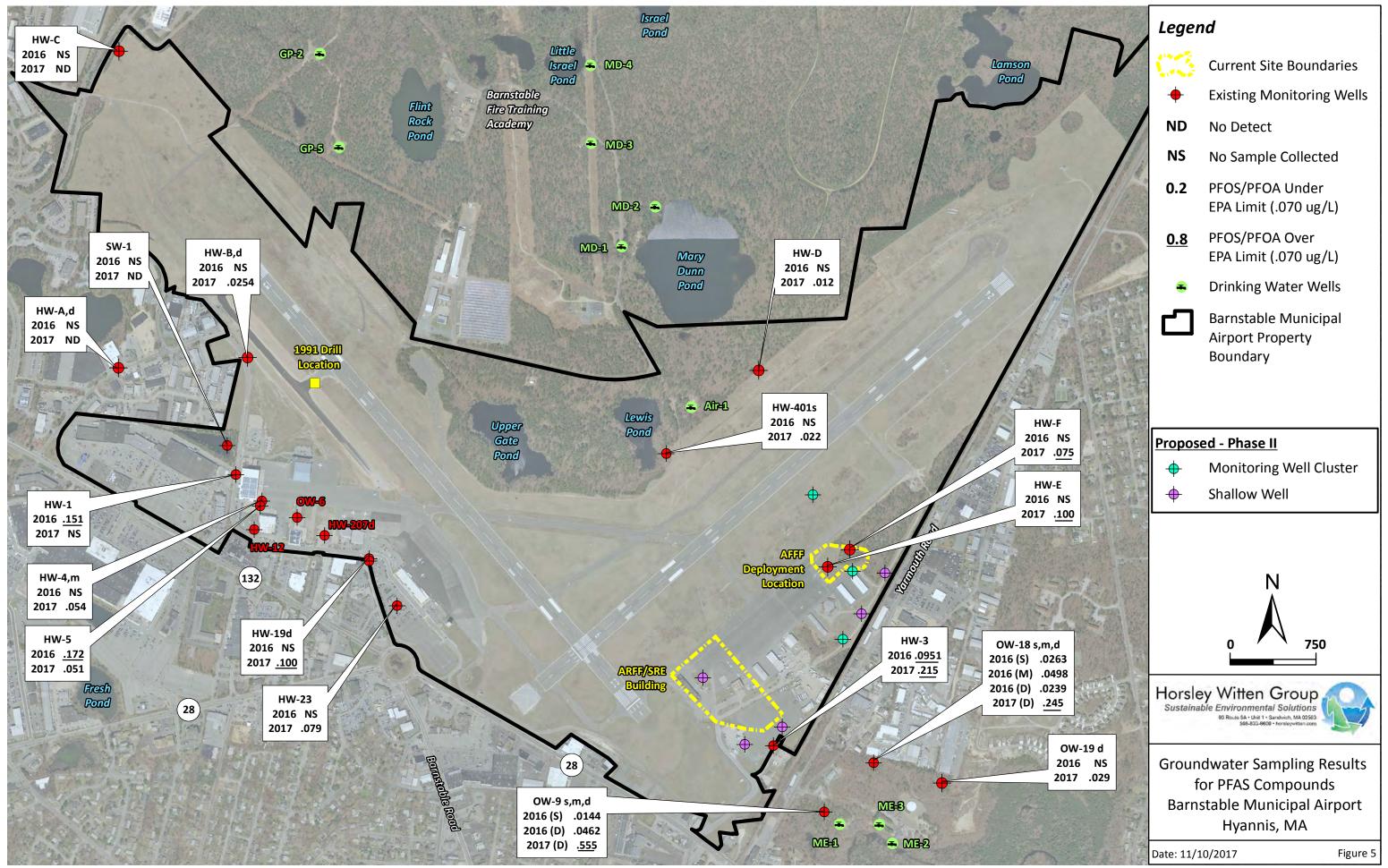



Figure 3


Path: \\hw-file2\HW-Server\Projects\HYA\17027 BMA PFOS 1-4 IRA\GIS\Maps\Report_Maps\171109_PFAS_Sites_.mxd

*Imagery - MassGIS 2014

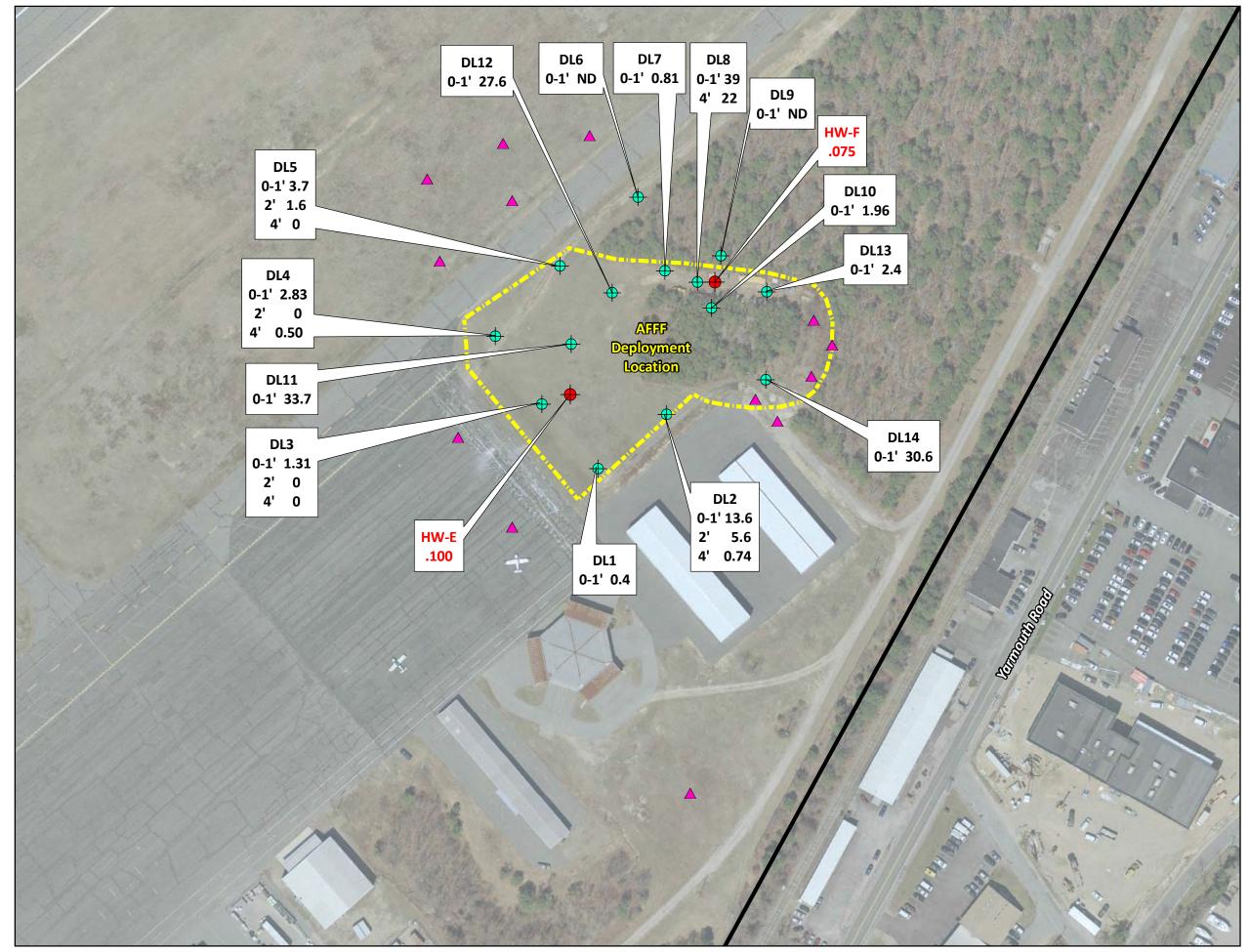
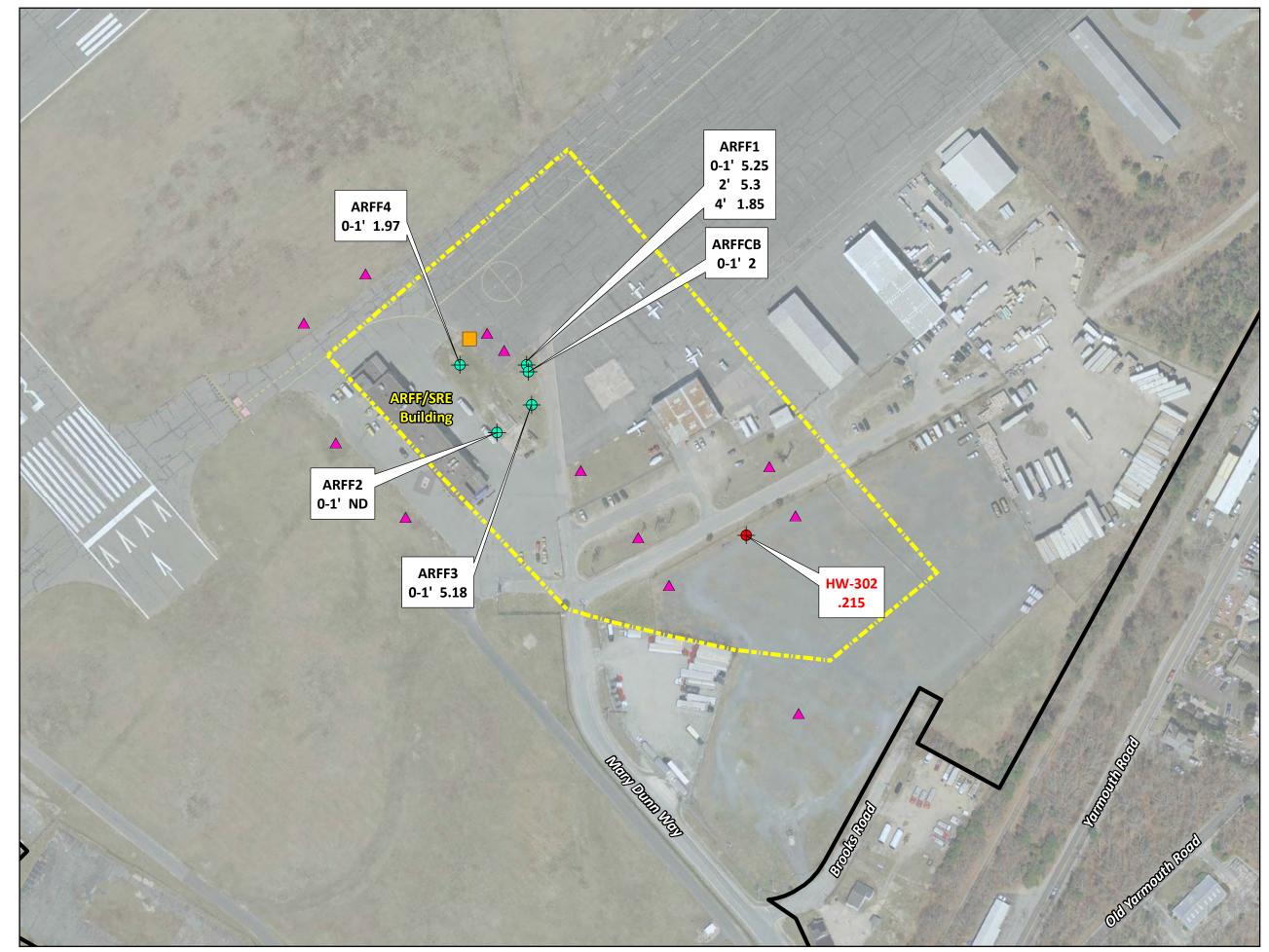
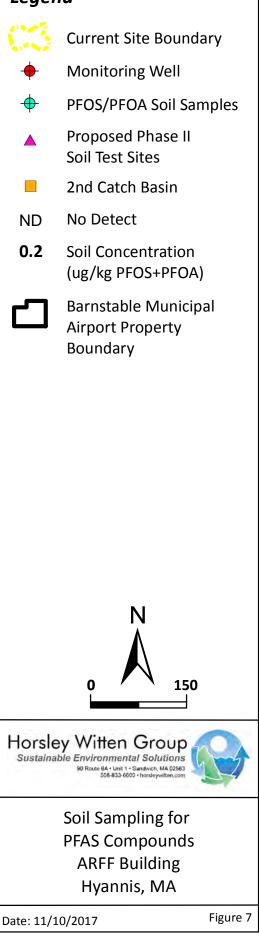
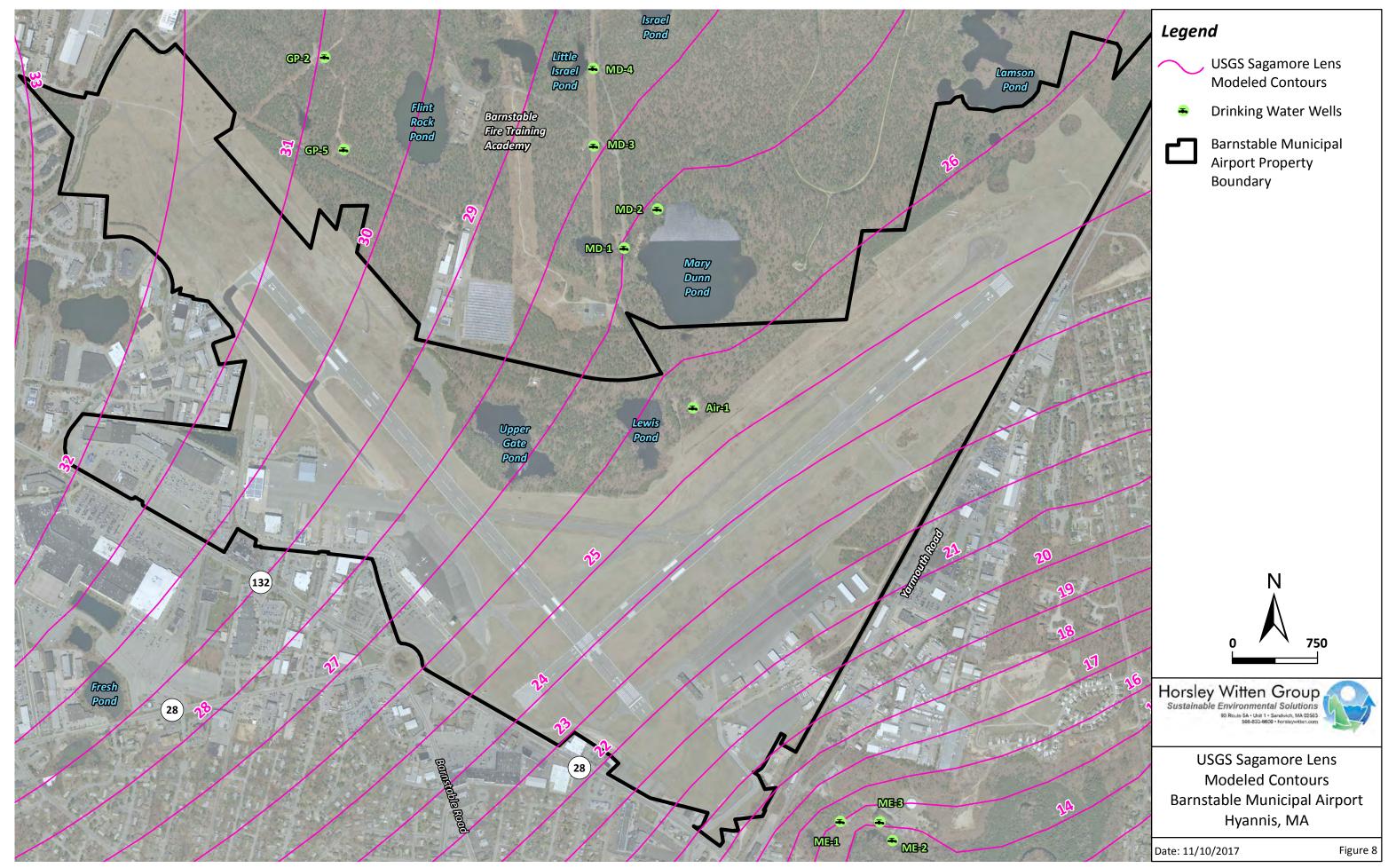

Path: \\hw-file2\HW-Server\Projects\HYA\17027 BMA PFOS 1-4 IRA\GIS\Maps\Report_Maps\171108_DioxaneMap.mxd

Figure 4

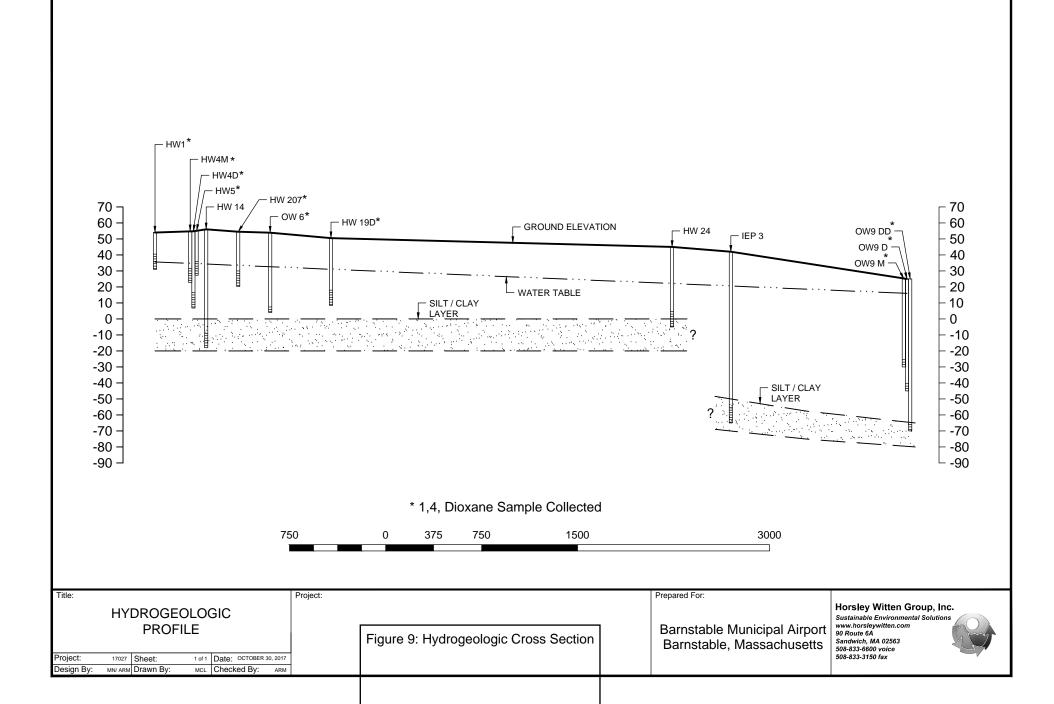
*Imagery - MassGIS 2014


Path: \\hw-file2\HW-Server\Projects\HYA\17027 BMA PFOS 1-4 IRA\GIS\Maps\Report_Maps\171109_Prop_PFASWells.mxd


Legend


Path: H:\Projects\HYA\17027 BMA PFOS 1-4 IRA\GIS\Maps\Report_Maps\171108_Deployment Area Site.mxd

Legend



Path: H:\Projects\HYA\17027 BMA PFOS 1-4 IRA\GIS\Maps\Report_Maps\171108_ARFF Building Site.mxd

*Imagery - MassGIS 2014

Path: H:\Projects\HYA\17027 BMA PFOS 1-4 IRA\GIS\Maps\Report_Maps\171108_Groundwater.mxd

Tables

Table 1. 1,4 Dioxane Groundwater Results

	GW-1	Date	HW-4D	HW-4M	HW-207D	HW-19D	HW-A(D)	HW-B(D)	
1,4-Dioxane	0.3	4/5/2017	ND	ND	ND	ND	ND	ND	
		Date		OW-18M	OW-18D	OW-19D	OW-19M	OW-9DD	
1,4-Dioxane	0.3	4/11/2017		ND	0.552	0.800	ND	0.838	

Notes:

ND= Not detected by method

ug/L = micrograms per liter

MDL = method detection limit

Table 2. Soil Results - June and September 2017

	DL1(0-1')	DL2 (0-1')	DL2 2'	DL2 4'	DL3 (0-1')	DL3 (0-1') LAB	DI 2 21 0/20/2017	DL3 4' 9/26/2017
	6/20/2017	6/20/2017	9/26/2017	9/26/2017	6/20/2017	DUP 6/20/2017	DL3 Z 9/20/2017	DL3 4 9/20/2017
Perfluorobutanesulfonic acid (PFBS)	ND	ND	ND	ND	ND	ND	ND	ND
Perfluoroheptanoic acid (PFHpA)	0.30J	1.9	1.2	0.48J	0.84J	0.79J	ND	ND
Perfluorohexanesulfonic acid (PFHxS)	ND	1.8	0.74J	0.59J	0.34J	0.34J	ND	ND
Perfluorononanoic acid (PFNA)	ND	0.81J	2.5	ND	0.55J	0.51J	ND	ND
Perfluorooctane sulfonate (PFOS)	0.40J	12	1.5	ND	0.51J	0.45J	ND	ND
Perfluorooctanoic acid (PFOA)	ND	1.6	4.1	0.74J	0.80J	0.63J	ND	ND
PFOS+PFOA	0.40J	13.6	5.6	0.74	1.31	1.08	ND	ND
	DL4 (0-1') 6/20/2017	DL4 2' 9/26/2017	DL4 4' 9/26/2017	DL5 (0-1') 6/20/2017	DL5 2' 9/26/2017	DL5 4' 9/26/2017	DL6 (0-1') 6/20/2017	DL7** (0-1') 6/20/2017
Perfluorobutanesulfonic acid (PFBS)	ND	ND	ND	ND	ND	ND	ND	ND
Perfluoroheptanoic acid (PFHpA)	0.31J	ND	ND	2.5	0.40J	0.50J	5	2.5J
Perfluorohexanesulfonic acid (PFHxS)	ND	ND	ND	0.49J	0.49J	ND	ND	ND
Perfluorononanoic acid (PFNA)	2.7	ND	3.7	0.19J	ND	ND	0.19J	9.6J
Perfluorooctane sulfonate (PFOS)	2.0	ND	0.50J	ND	ND	ND	ND	3.9J
Perfluorooctanoic acid (PFOA)	0.83J	ND	ND	3.7	1.6	ND	ND	4.2J
PFOS+PFOA	2.83	ND	0.5	3.7	1.6	ND	ND	8.1
	DL8** (2')	DL8** (4')	DL9 (0-1')	DL10 (0-1')	DL 11 (0-1')	DL12 (0-1')	DL13 (0-1')	DL14 (0-1')
	6/20/2017	9/26/2017	6/20/2017	6/20/2017	9/26/2017	9/26/2017	9/26/2017	9/26/2017
Perfluorobutanesulfonic acid (PFBS)	ND	ND	ND	ND	ND	ND	ND	ND
Perfluoroheptanoic acid (PFHpA)	2.9J	4.7J	0.66J	1.3	2.1	1.2	1.6	4.9
Perfluorohexanesulfonic acid (PFHxS)	ND	ND	0.35J	0.94J	0.82J	ND	ND	0.71J
Perfluorononanoic acid (PFNA)	46	ND	0.22J	ND	16	7.3	1.5	10
Perfluorooctane sulfonate (PFOS)	14	ND	0.38J	0.26J	29	23	0.66J	7.6
Perfluorooctanoic acid (PFOA)	25	22	0.68J	1.7	4.7	4.6	2.4	23
PFOS+PFOA	39	22	1.06	1.96	33.7	27.6	3.06	30.6
	ARFF1 (0-1')	ARFF1 (2')	ARFF1 (4')	ARFF2 (0-1')	ARFF3 (0-1')	ARFF4 (0-1')	ARFF4 (0-1')	ARFFCB (0-1)
	6/20/2017	9/26/2017	9/26/2017	6/20/2017	9/26/2017	9/26/2017	LAB DUP	9/26/2017
Perfluorobutanesulfonic acid (PFBS)	ND	ND	ND	ND	ND	ND	NA	ND
Perfluoroheptanoic acid (PFHpA)	0.82J	1.8	0.66J	ND	0.60J	0.75J	NA	0.60J
Perfluorohexanesulfonic acid (PFHxS)	ND	ND	ND	ND	0.64J	ND	NA	ND
Perfluorononanoic acid (PFNA)	2.5	5.7	1.4	2.0J	0.91J	2.9	NA	ND
Perfluorooctane sulfonate (PFOS)	4.5	2.7	1.1	0.29J	4.4	1	NA	1.1
Perfluorooctanoic acid (PFOA)	0.75J	2.6	0.75J	ND	0.78J	0.97J	NA	0.90J
PFOS+PFOA	5.25	5.3	1.85	0.29	5.18	1.97	NA	2
	Stockpile East	Stockpile West	Loam Pile					
Perfluorobutanesulfonic acid (PFBS)	ND	ND	ND					
Perfluoroheptanoic acid (PFHpA)	ND	ND	ND					
Perfluorohexanesulfonic acid (PFHxS)	ND	ND	ND					
Perfluorononanoic acid (PFNA)	ND	ND	ND					
Perfluorooctane sulfonate (PFOS)	0.39J	0.38J	0.81J					
Perfluorooctanoic acid (PFOA)	ND	ND	ND					
PFOS+PFOA	0.39	0.38	0.81					

**Sample diluted, Detection limits adjusted accordingly J = Results between RDL and MDL

ND= Not detected by method

ug/kg = micrograms per kilogram

MDL = method detection limit

Table 3. Groundwater Results 2016-2017

				North Ramp				Lewis	s Pond		
	HW-1	HW-1	HW-4M	ни	V-5	HW-23	HW-19D	HW-D	HW-401S	HW-C	
	7/1/2016	6/20/2017	4/5/2017	7/1/2016	4/7/2017	6/20/2017	6/20/2017	4/7/2017	4/7/2017	4/7/2017	
Perfluorobutanesulfonic acid (PFBS)	ND	0.02	0.005J	ND	ND	0.0051J	0.0081J	ND	ND	ND	
Perfluoroheptanoic acid (PFHpA)	0.01	0.0042J	0.007J	0.01	0.0084J	0.0045J	0.0052J	ND	0.0043J	ND	
Perfluorohexanesulfonic acid (PFHxS)	0.018	0.065	0.02	0.018	0.018J	0.021	0.046	0.0089J	0.011J	ND	
Perfluorononanoic acid (PFNA)	ND	0.0057J	ND	ND	ND	ND	0.0065J	ND	ND	ND	
Perfluorooctane sulfonate (PFOS)	0.017	0.24	0.043	0.017	0.052	0.0079J	0.061	0.022	0.012J	ND	
Perfluorooctanoic acid (PFOA)	0.033	0.022	0.011J	0.033	0.020J	ND	0.017J	ND	ND	ND	
PFOS+PFOA	0.05	0.262	0.054	0.05	0.072	0.0079	0.078	0.022	0.012	ND	
			Steamship	Parking Lot			Air	ield	Airpo	rt Road	
	HW-2	ни	V-3	HW-300	HW-301	HW-302	HW-E	HW-F	HW-A	HW-B	
	7/1/2016	7/1/2016	4/5/2017	7/1/2016	7/1/2016	7/1/2016	4/5/2017	4/5/2017	4/7/2017	4/7/2017	
Perfluorobutanesulfonic acid (PFBS)	ND	ND	ND	ND	ND	ND	ND	ND	0.017J	0.0077J	
Perfluoroheptanoic acid (PFHpA)	0.0071	0.016	0.1	0.0096	0.002	0.019	0.15	0.34	0.0048J	0.049	
Perfluorohexanesulfonic acid (PFHxS)	0.0035	0.0043	0.020J	0.012	0.038	0.006.3	0.042	0.019J	0.0079J	0.044	
Perfluorononanoic acid (PFNA)	ND	0.0063	0.027	ND	ND	0.054	0.0087J	ND	ND	ND	
Perfluorooctane sulfonate (PFOS)	0.012	0.084	0.15	0.017	0.011	0.014	0.047	ND	ND	0.026	
Perfluorooctanoic acid (PFOA)	0.0063	0.0091	0.065	0.0052	0.0037	0.033	0.053	0.075	ND	0.0094J	
PFOS+PFOA	0.0183	0.0931	0.215	0.0222	0.0147	0.047	0.1	0.075	ND	0.0354	
					Maher Wells					Kmart	
								OW-18D			
	OW-9S	OW	-9D	OW-18S	OW-18M	OW	-18D	Duplicate OW-19D		Surface Water	
	7/5/2016	7/5/2016	4/11/2017	7/5/2016	7/5/2016	7/5/2016	4/11/2017	7/5/2016	4/11/2017	6/20/2017	
Perfluorobutanesulfonic acid (PFBS)	ND	ND	ND	ND	ND	ND	0.016J	ND	0.0055J	ND	
Perfluoroheptanoic acid (PFHpA)	0.014	0.0028	0.034	0.00.1	0.0029	0.0071	0.015J	0.0063	0.0051J	ND	
Perfluorohexanesulfonic acid (PFHxS)	ND	0.012	0.12	0.0068	0.016	0.01	0.13	0.011	0.029	ND	
Perfluorononanoic acid (PFNA)	0.0077	0.0036	0.059	ND	0.0076	0.0065	ND	0.0058	0.006J	0.0043 (NA)	
Perfluorooctane sulfonate (PFOS)	0.0074	0.041	0.5	0.0083	0.044	0.018	0.22	0.019	0.029	ND	
Perfluorooctanoic acid (PFOA)	0.007	0.0052	0.055	0.018	0.0058	0.0059	0.025	0.0059	ND	ND	
PFOS+PFOA	0.0144	0.0462	0.555	0.0263	0.0498	0.0239	0.245	0.0249	0.029	ND	

J = Results between RDL and MDL

ug/L = micrograms per liter Shaded / Bold results above DEP GW-1 standard (0.07 ug/L)

ND= Not detected by method "North Ramp" or "Kmart" = denotes general location near sampling location

Monitoring Well Logs

MONITORING WELL BORING LOG Project: 17027- Barnstable On-call #4

HW-A(d) (cape gun works) Boring No.

Date: 4/4/2017 **Completion Depth:** 58' bgs **Elevation: Inspector:** JDB

Client: Barnstable Minicipal Airport Boring Contractor: New england Goetech

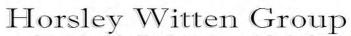
Boring Equipment: Direct Push, 3" casing

Proportions	s Used:		Abbreviations:							
		<u>Color</u>	<u>Angular</u>	Misc.	<u>4</u>	Size				
trace (tr)	0 - 10%	Blue (Bl) Green (C	r) Round (rnd.)	d.) Fragments (frag.) Fine = (f) Fine to Coarse =		Fine to Coarse $=$ (f-c)				
little (li)	10 - 20%	Red (R) Gray (G	y) Angular (ang.)	Cement (cem.)	Medium $=$ (m)	Very = (v)				
some (so)	20 - 35%	Light (lt) Brown (Br)	Well-Graded Sand (SW)	Coarse = (c)	More/Less = (+/-)				
and	35 - 50%	Dark (dk) Orange (Or)	Poorly-Graded Sand (SP)	Dark = (dk)					
		Rust (Ru) Black (B	lk)	Well-Graded Gravel (GW)	Medium = (m) Very = (v) Coarse = (c) More/Less = $(+/-)$ Dark = (dk)					
				Poorly-Graded Gravel (GP)						
				Below Land Surface (BLS) Not Available (N/A)						

Depth Feet	Descri	ntion	Penetration	Recovery	USCS Code	USCS Color	PID (parts per million)	Comments	We Deta	
0		C						Cement #2 sand @ 6" bgs Bontonite @ 2' bgs	>	0
5								#2 sand @ 4' bgs		5
10										10
15										15
20								Groundwater @		20
25								22.4' bgs		25
30										30
35	35-40' bgs	0-3" - Med Br, F sand, little gravel;		24"	ang	brn				35
40		3-12" - Lt Br, F sand; 12+" - Lt Br, well graded sand, some gravel								40
	40-45' bgs	0-2" - Lt Br, F sand, little gravel; 2-10" - Lt Br, M-C sand, some gravel		10"	ang	brn				
45										45
	45-50' bgs	Med Br, F sand, little gravel		2"	ang	brn		0.02 slot screen @ 48-58 ' bgs		
50	50-55' bgs	Lt Br, well graded sand, some large gravel		24"	ang	brn				50
55				~ '						55
	55-60' bgs	0-3" - Lt Br, F sand, little gravel; 3-12" - M sand, some C sand/gravel; 15" - Lt Br, F sand; 15-18" - Lt Br, F sand, little gravel		18"	ang	brn				ļ
60		10 10 Lo Di, Found, nuc graver								60

Horsley Witten Group sustainable Environmental Solutions 90 Route 6A · Sandwich, MA · 02563 Tel: 508-833-6600 · Fax: 508-833-3150 · www.horsleywitten.com

MONITORING WELL BORING LOG


Project: 17027- Barnstable On-call #4 Client: Barnstable Minicipal Airport

HW-A(s) (cape gun works) Boring No. **Date:** 3/16/2017

Completion Depth: 32' bgs **Elevation: Inspector:** JDB

Proportions	SUsed:			Abbreviations:							
		<u>(</u>	<u>Color</u>	Angular	<u>Misc.</u>	<u>S</u>	<u>ize</u>				
trace (tr)	0 - 10%	Blue (Bl)	Green (Gr)	Round (rnd.)	Fragments (frag.)	Fine = (f)	Fine to Coarse = $(f-c)$				
little (li)	10 - 20%	Red (R)	Gray (Gy)	Angular (ang.)	Cement (cem.)	Medium = (m)	Very = (v)				
some (so)	20 - 35%	Light (lt)	Brown (Br)		Well-Graded Sand (SW)	Coarse = (c)	More/Less = (+/-)				
and	35 - 50%	Dark (dk)	Orange (Or)		Poorly-Graded Sand (SP)	Dark = (dk)					
		Rust (Ru)	Black (Blk)		Well-Graded Gravel (GW)						
					Poorly-Graded Gravel (GP)						
					Below Land Surface (BLS) Not Available (N/A)						

Depth Feet	Description		Penetration	Recovery	USCS Code		PID (parts per million)	Comments	Well Details	Depth Feet
	0"-4" asphalt							Cement #2 sand @ 6" bgs		0
	0-5' bgs Light Brov	vn M-C sand, some F sand, little gravel		30"	ang	brn		Bontonite @ 2' bgs #2 sand @ 4' bgs		
5	5-10 bgs	vn M-C sand, some F sand, little gravel; ottom 6" F white sand		43"	ang	brn				5
10	10-15 Dgs 32" - Lt Br, F			48"	ang	brn				10
15	32	" - Drk Br, M-C sand; -48" - Lt Br, F-M sand Lt Br, M-C sand, some F sand								15
20		rk Br, M-C sand; some F sand		43"	ang	brn				20
		12" - Lt Br, M-C sand; rk Br, M-C sand, some gravel		48"	ang	brn		0.02 slot screen @ 22-32 'bgs		
25		.t Br, M-C sand, some F sand; rk Br, M-C sand; some F sand		43"	ang	brn		Groundwater @ 25.5' bgs		- 25
30										30
35										-
40										
45										
50										
55										

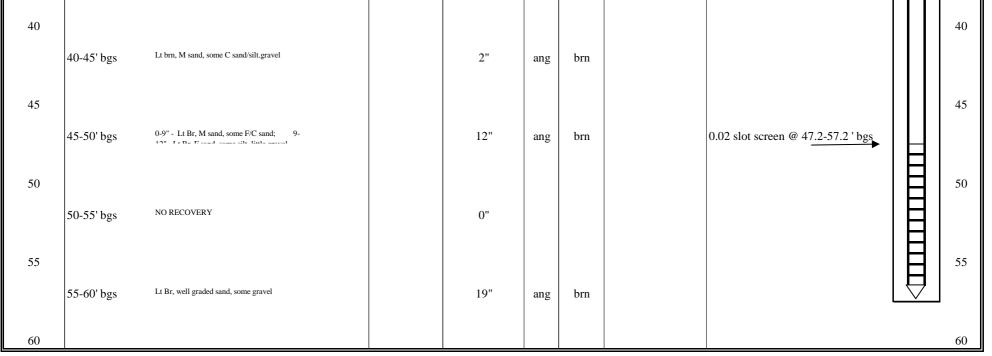
Sustainable Environmental Solutions 90 Route 6A • Sandwich, MA • 02563 Tel: 508-833-6600 • Fax: 508-833-3150 • www.horsleywitten.com

MONITORING WELL BORING LOG

Boring No.

Project: 17027- Barnstable On-call #4 **Client:** Barnstable Minicipal Airport Boring Contractor: New england Goetech

Boring Equipment: Direct Push, 3" casing


Abbreviations: **Proportions Used:** Misc. Angular <u>Color</u> <u>Size</u> 0 - 10% trace (tr) Blue (Bl) Green (Gr) Round (rnd.) Fragments (frag.) Fine = (f) Fine to Coarse = (f-c)Angular (ang.) Gray (Gy) Very = (v)little (li) 10 - 20% Red (R) Cement (cem.) Medium = (m)20 - 35% Well-Graded Sand (SW) More/Less = (+/-) some (so) Light (lt) Brown (Br) Coarse = (c)35 - 50% and Dark (dk) Orange (Or) Poorly-Graded Sand (SP) Dark = (dk)Rust (Ru) Black (Blk) Well-Graded Gravel (GW) Poorly-Graded Gravel (GP) Below Land Surface (BLS) Not Available (N/A)

Depth						USCS	PID		Well	
Feet	Descrij	ption	Penetration	Recovery	Code	Color	(parts per million)	Comments	Details	s Feet
0								Cement #2 sand @ 9" bgs		0
5										5
10								Bentonite @ 12' bgs		10
15								#2 sand @ 15' bgs►		15
20										20
25								Groundwater @ 22.75' bgs		25
30	30-35' bgs	0-16" - Lt Br, M sand, some C sand/gravel; 16.10" - Med Br E sand little gravel		19"	ang	brn				30
35		The IS - Med BY P SING HITLE OPAVAL								35
	35-40' bgs	Lt brn, M sand, some C sand/silt.gravel		2"	ang	brn				

HW-B(d)Date: 4/3/2017

Completion Depth: 57.2' bgs

Elevation: Inspector: JDB

MONITORING WELL BORING LOG

Project: 17027- Barnstable On-call #4 Client: Barnstable Minicipal Airport

HW-B(s) Boring No. **Date:** 3/16/2017

Completion Depth: 30.5' bgs **Elevation: Inspector:** JDB

Boring Contractor: New england Goetech

Boring Equipment: Direct Push, 3" casing

Proportions	Used:				Abbreviations:		
		<u>(</u>	<u>Color</u>	<u>Angular</u>	<u>Misc.</u>	<u>S</u>	Size
trace (tr)	0 - 10%	Blue (Bl)	Green (Gr)	Round (rnd.)	Fragments (frag.)	Fine = (f)	Fine to $Coarse = (f-c)$
little (li)	10 - 20%	Red (R)	Gray (Gy)	Angular (ang.)	Cement (cem.)	Medium = (m)	Very = (v)
some (so)	20 - 35%	Light (lt)	Brown (Br)		Well-Graded Sand (SW)	Coarse = (c)	More/Less = (+/-)
and	35 - 50%	Dark (dk)	Orange (Or)		Poorly-Graded Sand (SP)	Dark = (dk)	
		Rust (Ru)	Black (Blk)		Well-Graded Gravel (GW)		
					Poorly-Graded Gravel (GP)		
					Below Land Surface (BLS) Not Available (N/A)		

FeetDescriptionPenetrationRecoveryCodeCoder(parts per million)Comments00°-6° Organic $0.5° bgs$ $\frac{40° + 1.0\% MC tool some Funde^{-1.0\% Mc Ho} hand, one C used50°angbmCenentCenent55.10° bgs0.10° + 1.0\% MC tool some Fund10° - 200 Ho M soft, one C used45°angbmFCenent1010-15° bgs\frac{0.12° - Mc Bit, MC and, some F und120° - 1.0\% C code, some $	Depth					USCS		PID		Well	-
$\begin{bmatrix} 0.5^{\circ} \text{ bgs} & \frac{0.6^{\circ} \cdot 1 \text{ fr} \text{ KV} \text{ Cand, some F and,}}{18^{\circ} \cdot 264 \text{ Br, K I and, some C and}} & 50^{\circ} & \text{ang} & \text{brn} \\ \begin{bmatrix} \# 2 \text{ sand } @ 9^{\circ} \text{ bgs} & \underline{1} \\ 5 \\ 5 \\ 10^{\circ} \text{ bgs} & \frac{0.10^{\circ} \cdot 1.8 \text{ Br, F M and, some C and}}{10^{\circ} \cdot 1.8 \text{ Br, F M and, some C and}} & 45^{\circ} & \text{ang} & \text{brn} \\ \begin{bmatrix} 10 \\ 10 \\ 12.36^{\circ} \cdot 1.0 \text{ bgs} & \frac{0.12^{\circ} \cdot \text{ Med Br, M C and, some F and, gravel;}}{12.36^{\circ} \cdot 1.0 \text{ so, com F N and, some C gravel}} & 52^{\circ} & \text{ang} & \text{brn} \\ \end{bmatrix} & \text{Bentonite @ 12^{\circ} \text{ bgs}} & \frac{12^{\circ} \text{ cond, some F and, gravel;}}{15 \\ 15 \\ 20^{\circ} \text{ cond} \text{ some C gravel} & 60^{\circ} & \text{ang} & \text{brn} \\ \end{bmatrix} & \begin{bmatrix} 0.22^{\circ} \cdot 1.8 \text{ b, F M and, some C gravel} & 60^{\circ} & \text{ang} & \text{brn} \\ 10 \\ 10 \\ 10 \\ 22^{\circ} \cdot 1.0 \text{ br, F M and, some C gravel} & 60^{\circ} & \text{ang} & \text{brn} \\ \end{bmatrix} & \begin{bmatrix} 0.22^{\circ} \cdot 1.8 \text{ b, F M and, some C gravel} & 48^{\circ} & \text{ang} & \text{brn} \\ 12 \\ 22^{\circ} \cdot 1.0 \text{ br, F M and, some C and, and large gravel} & 60^{\circ} & \text{ang} & \text{brn} \\ 12 \\ 22^{\circ} \cdot 1.0 \text{ br, F M and, some C and, and large gravel} & 60^{\circ} & \text{ang} & \text{brn} \\ 12 \\ 22^{\circ} \cdot 1.10 \text{ br, F M and, some C and, and large gravel} & 36^{\circ} & \text{ang} & \text{brn} \\ 12 \\ 25 \\ 25 \\ 25 \\ 30^{\circ} \text{ brg} & \frac{MC \text{ and, some F and, gravel}}{22^{\circ} \cdot 1.0 \text{ br, F M and}} & 36^{\circ} & \text{ang} & \text{brn} \\ 13 \\ 12 \\ 12 \\ 22 \\ 25 \\ 25 \\ 30^{\circ} \text{ brg} & \frac{MC \text{ and, some F and, gravel}}{23 \\ 25 \\ 25 \\ 30^{\circ} \text{ brg} & \frac{MC \text{ and, some F and, gravel}}{23 \\ 36^{\circ} & \text{ang} & \text{brn} \\ 13 \\ 36^{\circ} & \text{ang} & \text{brn} \\ 13 \\ 13 \\ 10 \\ 12 \\ 12 \\ 12 \\ 10 \\ 10 \\ 12 \\ 12$	Feet	Desci	ription	Penetration	Recovery	Code	Color	(parts per million)	Comments	Detail	s Feet
$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 18^{4} \cdot 10^{4} & 18^{6} & 10^{4} & 18^{6} & 1$	0				50"	ang	brn				0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	0.5.058				ung	UII				5
10-15' bgs 0-12'' Md Br, MC sand, some F sandgravel; gravel; 36*' - Dk Br, F-M sand, ittle gravel; 36*' - Dk Br, F-M sand; 15 52" ang brn Bentonite @ 12' bgs 15 15-20' bgs 0-20'' - Li Br, F-M sand; 20*'' - F-M sand; some C sand, and large gravel 60" ang brn 20 20-25' bgs 0-12"' - Mel Br, MC sand, some F and; 16-22" - Li Br, F-M sand; 22+'' - Li Br, F-M sand; 48" ang brn 25 25-30' bgs MC sand, some F and; 12-5' bgs 36" ang brn		5-10' bgs			45"	ang	brn				
$\begin{bmatrix} gavel: & gavel: &$	10	10-15' bgs			52"	ang	brn		Bentonite @ 12' bgs		10
15-20 bgs 20+**-F-M sand, some C sand, and large gravel 00 alig bill 20 20-25' bgs 0-12**-Med Br, M-C sand, some F sand; 12-16**- Lt Br, F-M sand; 48" ang brn 0.02 slot screen @ 20.5-30.5 'bgs 25 25-30' bgs M-C sand, some F sand/gravel 36" ang brn Fragmentation	15		gravel;					:	#2 sand @ 15' bgs		15
20-25' bgs 0-12" - Med Br, M-C sand, some F sand; 12-16" - Li Br, F-M sand; 16-22" - Med Br, M-C sand, some F sand; 22+" - Li Br, F-M sand 25-30' bgs M-C sand, some F sand/gravel 36" ang brn 0.02 slot screen @ 20.5-30.5 ' bgs Groundwater @ 23.5' bgs		15-20' bgs			60"	ang	brn				
25 25-30' bgs ^{M-C sand, some Fsand/gravel} 36" ang brn	20	20-25' bgs	12-16" - Lt Br, F-M sand; 16-22" - Med Br, M-C sand, some F sand;		48"	ang	brn				20
30	25	25-30' bgs	M-C sand, some Fsand/gravel		36"	ang	brn				25
	30										30
35	35										

40			
45			
50			
55			

Horsley Witten Group Sustainable Environmental Solutions

MONITORING WELL BORING LOG


Project: 17027- Barnstable On-call #4 **Client:** Barnstable Minicipal Airport Boring No. HW-C

Date: 3/16/2017 Completion Depth: 42.5' bgs Elevation: Inspector: JDB

Proportions	s Used:				Abbreviations:		
		<u>(</u>	<u>Color</u>		<u>Misc.</u>	<u>S</u>	<u>Size</u>
trace (tr)	0 - 10%	Blue (Bl)	Green (Gr)	Round (rnd.)	Fragments (frag.)	Fine = (f)	Fine to Coarse = $(f-c)$
little (li)	10 - 20%	Red (R)	Gray (Gy)	Angular (ang.)	Cement (cem.)	Medium = (m)	Very = (v)
some (so)	20 - 35%	Light (lt)	Brown (Br)		Well-Graded Sand (SW)	Coarse = (c)	More/Less = (+/-)
and	35 - 50%	Dark (dk)	Orange (Or)		Poorly-Graded Sand (SP)	Dark = (dk)	
		Rust (Ru)	Black (Blk)		Well-Graded Gravel (GW)		
					Poorly-Graded Gravel (GP)		
					Below Land Surface (BLS) Not Available (N/A)		

Depth	D		Destation	D	USCS		PID (Well	Depth
Feet	Descri	ւթսoո	Penetration	Recovery	Code	Color	(parts per million) Comments	D	etails	Feet
0	0"-12" Organic						Cement	→		0
	0-5' bgs	0-8" - M-C sand, little gravel; 8- 26" - Lt Br, F sand, some silt; 26- 32" - Or Br, F-M sand; 32- 44 - Organic		44"	ang	brn	#2 sand @ 9" bgs	→		
5							Bontonite @ 12' bgs	→		5
	5-10' bgs	0-16" - Drk Br, C sand, some Fsand/gravel; 16- 30" - Med Br, M sand, some F sand/gravel; 30-34" - Lt Br, F sand; 34+" - Or Br, M-C sand, little Fsand/silt		44"	ang	brn	#2 sand @ 7' bgs	•		
10										10
	10-15' bgs	Med Br, M-C sand, some F sand/large gravel (1"+);		45"	ang	brn				
15										15
	15-20' bgs	Med Br, M-C sand, some F sand		53"	ang	brn				
20										20
	20-25' bgs	0-6" - Or Br, M-C sand, some gravel; 6- 12" - Lt Br, F-M sand, some gravel; 12- 26" - Lt Br, F sand; 26+" - Med Br, M-C sand, little F sand, some gravel		55"	ang	brn				
25										25
	25-30' bgs	0-18" - Lt Br, F-M sand, little C sand; 18+" - Med Br, F sand, some M sand/gravel		36"	ang	brn				
30										30
	30-35' bgs	0-12" - Lt Br, F sand, little C sand; 12+" - Med Br, C sand, some F-M sand, little gravel		48"			0.02 slot screen @ 32.5-42.5 ' bgs	→		
35										
	35-42" bgs	NO SAMPLE COLLECTED		0"						
40							Groundwater @ $39.3' \text{ bgs}$	Į		
45										
50										
55										

Horsley Witten Group Sustainable Environmental Solutions

MONITORING WELL BORING LOG

Project: 17027- Barnstable On-call #4 **Client:** Barnstable Minicipal Airport Boring No. HW-D

Date: 3/17/2017 Completion Depth: 29.5' bgs Elevation: Inspector: JDB

Proportions	Used:		Abbreviations:									
		<u>(</u>	ColorAngularMisc.Size		lize							
trace (tr)	0 - 10%	Blue (Bl)	Green (Gr)	Round (rnd.)	Fragments (frag.)	Fine = (f)	Fine to Coarse $=$ (f-c)					
little (li)	10 - 20%	Red (R)	Gray (Gy)	Angular (ang.)	Cement (cem.)	Medium = (m)	Very = (v)					
some (so)	20 - 35%	Light (lt)	Brown (Br)		Well-Graded Sand (SW)	Coarse = (c)	More/Less = (+/-)					
and	35 - 50%	Dark (dk)	Orange (Or)		Poorly-Graded Sand (SP)	Dark = (dk)						
		Rust (Ru)	Black (Blk)		Well-Graded Gravel (GW)							
					Poorly-Graded Gravel (GP)							
					Below Land Surface (BLS) Not Available (N/A)							

Depth Feet	Descri	ption	Penetration	Recovery	USCS Code		PID (parts per million)	Comments	We Deta	Depth Feet
	0"-6" Organic	<u>^</u>						Cement		0
	0-5' bgs	0-30" - Or Br, M sand, little F/C sand/gravel; 30-42" - F-M sand, some C sand/gravel; 42- 48" - Organic		48"	ang	brn				
5										5
	5-10' bgs	0-16" - Med Br, C sand, little F-M sand/large gravel; 16-24" - Med Br, M sand, little F sand, some C sand/gravel; 24+" - Med Br, C sand, little F-M sand/large		42"	ang	brn		Bontonite @ 7' bgs	•	
10	10.1511	0-20" - Lt Br, M-C sand, some F sand/gravel;		c c !!		1		#2 sand @ 9' bgs		10
	10-15' bgs	20-43" - Lt Br, C sand, little F sand/gravel, some C sand; 43+" - F-M sand, some C sand/gravel		55"	ang	brn				
15	15-20' bgs	0-15" - Med Br, M sand, some F/C sand/gravel; 15-25" - F-M sand, some C sand; 25+" -		40"	ang	brn				15
20		Drk Br, F-M sand, some C sand/gravel						0.02 slot screen @		20
	20-25' bgs	0-20" - Lt Br, M sand, some C sand, littleF sand/gravel;		38'	ang	brn		16.2-26.2 ' bgs	E	20
25		20+" - F-M sand, some C sand/gravel						Groundwater @ 22.6' bgs	Ē	25
	25-30' bgs	NO SAMPLE COLLECTED, SOIL SLUFFED OUT OF SLEEVE		0"						
30										30
35										
40										
45										
50										
55										

Horsley Witten Group sustainable Environmental Solutions 90 Route 6A · Sandwich, MA · 02563 Tel: 508-833-6600 · Fax: 508-833-3150 · www.horsleywitten.com

Boring No.

MONITORING WELL BORING LOG

Project: 17027- Barnstable On-call #4 Client: Barnstable Minicipal Airport

Date: 3/17/2017

Completion Depth: 26.5' bgs **Elevation: Inspector:** JDB

HW-E

Proportions	s Used:				Abbreviations:		
		<u>(</u>	Color Angular Misc. Size		<u>lize</u>		
trace (tr)	0 - 10%	Blue (Bl)	Green (Gr)	Round (rnd.)	Fragments (frag.)	Fine = (f)	Fine to Coarse = $(f-c)$
little (li)	10 - 20%	Red (R)	Gray (Gy)	Angular (ang.)	Cement (cem.)	Medium = (m)	Very = (v)
some (so)	20 - 35%	Light (lt)	Brown (Br)		Well-Graded Sand (SW)	Coarse = (c)	More/Less = (+/-)
and	35 - 50%	Dark (dk)	Orange (Or)		Poorly-Graded Sand (SP)	Dark = (dk)	
		Rust (Ru)	Black (Blk)		Well-Graded Gravel (GW)		
					Poorly-Graded Gravel (GP)		
					Below Land Surface (BLS) Not Available (N/A)		

Depth					USCS		PID		Well	Depth
Feet	Descr	iption	Penetration	Recovery	Code	Color	(parts per million)	Comments	Details	Feet
0	0"-4" Organic 0-5' bgs	0-12" - Med Br, M-C sand, some F sand, little gravel; 12-36" - Med Br, C sand, some F-M		40"	ang	brn		Cement	→	0
5		sand/gravel Med Br, C sand, little M-F sand/gravel				_				5
10	5-10' bgs	Med Di, C sand, inde M-P sand graver		36"	ang	brn		Bontonite @ 6.5' bgs	►	10
	10-15' bgs	0-12" - Lt Br, F sand; 12-24" - Lt Br, F-M sand, some C sand/gravel; 24-32" - Lt Br, F-M sand; 32+" - M-C sand, some F sand/gravel		60"	ang	brn				10
15	15-20' bgs	0-12" - Med Br, M-C sand, little F sand/gravel; 12-20" - F sand, some silt; 20+" - C sand, some F-M sand/gravel		58"	ang	brn		0.02 slot screen @ 16.2-26.2 ' bgs		15
20	20-25' bgs	Med Br, F sand, Little M-C sand/gravel ROCK IN SHOE		22"	ang	brn		Groundwater @ • • • • • • • • • • • • • • • • • •		- 20
25	25-30' bgs	Med Br, C sand, some M sand/gravel		24"	ang	brn				25
30										30
35										

40			
45			
50			
55			

Horsley Witten Group sustainable Environmental Solutions 90 Route 6A · Sandwich, MA · 02563 Tel: 508-833-6600 · Fax: 508-833-3150 · www.horsleywitten.com

MONITORING WELL BORING LOG

Project: 17027- Barnstable On-call #4 Client: Barnstable Minicipal Airport

Boring No. **Date:** 3/17/2017 **Completion Depth:** 27.2' bgs

> **Elevation: Inspector:** JDB

HW-F

Boring Contractor: New england Goetech

Boring Equipment: Direct Push, 3" casing

Proportions	Used:			Abbreviations:						
		<u>(</u>	<u>Color</u> <u>Angular</u> <u>Misc.</u> <u>Size</u>				lize			
trace (tr)	0 - 10%	Blue (Bl)	Green (Gr)	Round (rnd.)	Fragments (frag.)	Fine = (f)	Fine to Coarse = $(f-c)$			
little (li)	10 - 20%	Red (R)	Gray (Gy)	Angular (ang.)	Cement (cem.)	Medium $=$ (m)	Very = (v)			
some (so)	20 - 35%	Light (lt)	Brown (Br)		Well-Graded Sand (SW)	Coarse = (c)	More/Less = (+/-)			
and	35 - 50%	Dark (dk)	Orange (Or)		Poorly-Graded Sand (SP)	Dark = (dk)				
		Rust (Ru)	Black (Blk)		Well-Graded Gravel (GW)					
					Poorly-Graded Gravel (GP)					
					Below Land Surface (BLS) Not Available (N/A)					

Depth					USCS		PID		Well	Depth
Feet	Description		Penetration	Recovery	Code	Color	(parts per million)	Comments	Details	Feet
0	12-32" - Drk	Med Br, M sand, liitle C sand; k Br, C sand, some M sand/gravel; k Br, F sand, Some M sand/gravel; 40+" - Organic		45"	ang	brn		Cement #2 sand @ 1' bgs		0
5	5-10' bgs ^{C sand}	l, some F-M sand, tr gravel		52"	ang	brn				5
10	10-15' bgs 0-16	" - Lt Br, M sand, some C;		56"	ang	brn		Bontonite @ 7' bgs	•	10
15	32-41" - Mec	i-32" - Lt Br, F-M sand; d Br, M sand, some C sand/gravel; l+" F-M sand, tr gravel		50	ang	UIII				15
20	15-20' bgs M-C sand	d, some F-M sand, little gravel		52"	ang	brn		0.02 slot screen @		20
	20-23 0gs	Med Br, C sand, some F-M sand, little gravel; Gray, F-M sand, little C sand; Br, M-C sand, some Fsand/gravel		38'	ang	brn/gray		Groundwater @ 22.6' bgs		
25		E COLLECTED, SOIL SLUFFED OUT OF SLEEVE		0"						25
30										30
35										

40				
45				
50				
55				

Laboratory Results

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Jesse Bean Horsley & Witten 90 Route 6A Sandwich, MA 02563

RE: Barn. On-Call #4 (17027) ESS Laboratory Work Order Number: 1704197

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director

Analytical Summary

REVIEWED By ESS Laboratory at 12:20 pm, May 02, 2017

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

Subcontracted Analyses Maxxam Analytics - Cheektowaga, NY

PFOS

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4

ESS Laboratory Work Order: 1704197

SAMPLE RECEIPT

The following samples were received on April 10, 2017 for the analyses specified on the enclosed Chain of Custody Record.

Lab Number	Sample Name	Matrix	Analysis
1704197-01	HW-4D	Ground Water	8270D SIM
1704197-02	HW-4M	Ground Water	\$, 8270D SIM
1704197-03	HW-207D	Ground Water	8270D SIM
1704197-04	HW-19D	Ground Water	8270D SIM
1704197-05	HW-3	Ground Water	\$
1704197-06	HW-E	Ground Water	\$
1704197-07	HW-F	Ground Water	\$
1704197-08	HW-A(S)	Ground Water	\$
1704197-09	HW-A(D)	Ground Water	8270D SIM
1704197-10	HW-B (S)	Ground Water	\$
1704197-11	HW-5	Ground Water	\$
1704197-12	HW-B(D)	Ground Water	8270D SIM
1704197-13	HW-C	Ground Water	\$
1704197-14	HW-D	Ground Water	\$
1704197-15	HW-401S	Ground Water	\$
1704197-16	Equipment Blank	Aqueous	\$

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4

ESS Laboratory Work Order: 1704197

PROJECT NARRATIVE

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

C7D0192-TUN1 <u>Benzidine tailing factor >2.</u>

C7D0192-TUN1 DDT breakdown > 20%

C7D0192-TUN1 <u>Pentachlorophenol tailing factor > 2.</u>

No other observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4

Analytical Methods

ESS Laboratory Work Order: 1704197

CURRENT SW-846 METHODOLOGY VERSIONS

Prep Methods

1010A - Flashpoint 6010C - ICP 6020A - ICP MS 7010 - Graphite Furnace 7196A - Hexavalent Chromium 7470A - Aqueous Mercury 7471B - Solid Mercury 8011 - EDB/DBCP/TCP 8015C - GRO/DRO 8081B - Pesticides 8082A - PCB 8100M - TPH 8151A - Herbicides 8260B - VOA 8270D - SVOA 8270D SIM - SVOA Low Level 9014 - Cyanide 9038 - Sulfate 9040C - Aqueous pH 9045D - Solid pH (Corrosivity) 9050A - Specific Conductance 9056A - Anions (IC) 9060A - TOC 9095B - Paint Filter MADEP 04-1.1 - EPH / VPH

3005A - Aqueous ICP Digestion
3020A - Aqueous Graphite Furnace / ICP MS Digestion
3050B - Solid ICP / Graphite Furnace / ICP MS Digestion
3060A - Solid Hexavalent Chromium Digestion
3510C - Separatory Funnel Extraction
3520C - Liquid / Liquid Extraction
3540C - Manual Soxhlet Extraction
3541 - Automated Soxhlet Extraction
3546 - Microwave Extraction
3580A - Waste Dilution
5030B - Aqueous Purge and Trap
5030C - Aqueous Purge and Trap
5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4 Client Sample ID: HW-4D Date Sampled: 04/05/17 10:13 Percent Solids: N/A Initial Volume: 500 Final Volume: 0.5 Extraction Method: 3535A

ESS Laboratory Work Order: 1704197 ESS Laboratory Sample ID: 1704197-01 Sample Matrix: Ground Water Units: ug/L Analyst: VSC Prepared: 4/10/17 18:20

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

<u>Analyte</u> 1,4-Dioxane	<u>Results (MRL)</u> ND (0.250)	IDL <u>Method</u> 8270D SIM	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 04/13/17 18:39	Sequence C7D0192	<u>Batch</u> CD71038
	%Recov	very Qualifier	Limits				
Surrogate: 1,4-Dioxane-d8	53	%	15-115				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4 Client Sample ID: HW-4M Date Sampled: 04/05/17 10:30 Percent Solids: N/A Initial Volume: 500 Final Volume: 0.5 Extraction Method: 3535A

ESS Laboratory Work Order: 1704197 ESS Laboratory Sample ID: 1704197-02 Sample Matrix: Ground Water Units: ug/L Analyst: VSC Prepared: 4/10/17 18:20

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

<u>Analyte</u> 1,4-Dioxane	<u>Results (MRL)</u> ND (0.250)	MDL <u>Method</u> 8270D SIM	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 04/13/17 19:15	Sequence C7D0192	<u>Batch</u> CD71038
	%Recc	very Qualifier	Limits				
Surrogate: 1,4-Dioxane-d8	58	%	15-115				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4 Client Sample ID: HW-4M Date Sampled: 04/05/17 10:30

ESS Laboratory Work Order: 1704197 ESS Laboratory Sample ID: 1704197-02 Sample Matrix: Ground Water Units: %

Subcontracted Analysis

MDL

<u>Analyte</u> PFOS

<u>Results (MRL)</u> See Attached (N/A) Method Limit

DF

<u>Analyst</u> <u>Analyzed</u> <u>B</u>

Boguenfeld Batch

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4 Client Sample ID: HW-207D Date Sampled: 04/05/17 11:25 Percent Solids: N/A Initial Volume: 500 Final Volume: 0.5 Extraction Method: 3535A

ESS Laboratory Work Order: 1704197 ESS Laboratory Sample ID: 1704197-03 Sample Matrix: Ground Water Units: ug/L Analyst: VSC Prepared: 4/10/17 18:20

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

Analyte 1,4-Dioxane	<u>Results (MRL)</u> ND (0.250)	<u>MDL</u>	Method 8270D SIM	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 04/13/17 19:50	Sequence C7D0192	<u>Batch</u> CD71038
	%6	Recovery	Qualifier	Limits				
Surrogate: 1,4-Dioxane-d8		54 %		15-115				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4 Client Sample ID: HW-19D Date Sampled: 04/05/17 13:00 Percent Solids: N/A Initial Volume: 500 Final Volume: 0.5 Extraction Method: 3535A

ESS Laboratory Work Order: 1704197 ESS Laboratory Sample ID: 1704197-04 Sample Matrix: Ground Water Units: ug/L Analyst: VSC Prepared: 4/10/17 18:20

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

Analyte 1,4-Dioxane	<u>Results (MRL)</u> ND (0.250)	<u>MDL</u>	<u>Method</u> 8270D SIM	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 04/13/17 20:26	Sequence C7D0192	<u>Batch</u> CD71038
	%1	Recovery	Qualifier	Limits				
Surrogate: 1,4-Dioxane-d8		52 %		15-115				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4 Client Sample ID: HW-3 Date Sampled: 04/05/17 13:30

ESS Laboratory Work Order: 1704197 ESS Laboratory Sample ID: 1704197-05 Sample Matrix: Ground Water Units: %

Subcontracted Analysis

MDL

<u>Analyte</u> PFOS

Results (MRL) See Attached (N/A) Method Limit

DF

Analyst Analyzed Koduerkov Batch

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4 Client Sample ID: HW-E Date Sampled: 04/05/17 14:30

ESS Laboratory Work Order: 1704197 ESS Laboratory Sample ID: 1704197-06 Sample Matrix: Ground Water Units: %

Subcontracted Analysis

MDL

<u>Analyte</u> PFOS

Results (MRL) See Attached (N/A) Method Limit

DF

Analyst Analyzed Bodquer Batch

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4 Client Sample ID: HW-F Date Sampled: 04/05/17 15:00

ESS Laboratory Work Order: 1704197 ESS Laboratory Sample ID: 1704197-07 Sample Matrix: Ground Water Units: %

Subcontracted Analysis

MDL

<u>Analyte</u> PFOS

Results (MRL) See Attached (N/A) Method Limit

DF

Analyst Analyzed Koduerkov Batch

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4 Client Sample ID: HW-A (S) Date Sampled: 04/07/17 08:50

ESS Laboratory Work Order: 1704197 ESS Laboratory Sample ID: 1704197-08 Sample Matrix: Ground Water Units: %

Subcontracted Analysis

MDL

<u>Analyte</u> PFOS

<u>Results (MRL)</u> See Attached (N/A) Method Limit

DF

Analyst Analyzed <u>BooquerFood Batch</u>

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4 Client Sample ID: HW-A (D) Date Sampled: 04/07/17 09:30 Percent Solids: N/A Initial Volume: 500 Final Volume: 0.5 Extraction Method: 3535A

ESS Laboratory Work Order: 1704197 ESS Laboratory Sample ID: 1704197-09 Sample Matrix: Ground Water Units: ug/L Analyst: VSC Prepared: 4/10/17 18:20

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

Analyte 1,4-Dioxane	<u>Results (MRL)</u> <u>M</u> ND (0.250)	IDL Method 8270D SIM	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 04/13/17 21:02	Sequence C7D0192	<u>Batch</u> CD71038
	%Recov	ery Qualifier	Limits				
Surrogate: 1,4-Dioxane-d8	47 9	6	15-115				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4 Client Sample ID: HW-B (S) Date Sampled: 04/07/17 09:55

ESS Laboratory Work Order: 1704197 ESS Laboratory Sample ID: 1704197-10 Sample Matrix: Ground Water Units: %

Subcontracted Analysis

MDL

<u>Analyte</u> PFOS

<u>Results (MRL)</u> See Attached (N/A) Method Limit

DF

Analyst Analyzed B

BodquerFool Batch

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4 Client Sample ID: HW-5 Date Sampled: 04/07/17 10:45

ESS Laboratory Work Order: 1704197 ESS Laboratory Sample ID: 1704197-11 Sample Matrix: Ground Water Units: %

Subcontracted Analysis

MDL

<u>Analyte</u> PFOS

<u>Results (MRL)</u> See Attached (N/A) Method Limit

DF

Analyst Analyzed Koduerkov Batch

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4 Client Sample ID: HW- B (D) Date Sampled: 04/07/17 11:30 Percent Solids: N/A Initial Volume: 500 Final Volume: 0.5 Extraction Method: 3535A

ESS Laboratory Work Order: 1704197 ESS Laboratory Sample ID: 1704197-12 Sample Matrix: Ground Water Units: ug/L Analyst: VSC Prepared: 4/10/17 18:20

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

Analyte 1,4-Dioxane	<u>Results (MRL)</u> <u>M</u> ND (0.250)	DL <u>Method</u> 8270D SIM	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 04/13/17 21:37	Sequence C7D0192	<u>Batch</u> CD71038
	%Recove	ery Qualifier	Limits				
Surrogate: 1,4-Dioxane-d8	56 %	6	15-115				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4 Client Sample ID: HW-C Date Sampled: 04/07/17 12:50

ESS Laboratory Work Order: 1704197 ESS Laboratory Sample ID: 1704197-13 Sample Matrix: Ground Water Units: %

Subcontracted Analysis

MDL

<u>Analyte</u> PFOS

Results (MRL) See Attached (N/A) Method Limit

DF

Analyst Analyzed Koduerkov Batch

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4 Client Sample ID: HW-D Date Sampled: 04/07/17 14:20

ESS Laboratory Work Order: 1704197 ESS Laboratory Sample ID: 1704197-14 Sample Matrix: Ground Water Units: %

Subcontracted Analysis

MDL

<u>Analyte</u> PFOS

Results (MRL) See Attached (N/A) Method Limit

DF

Analyst Analyzed B

<u>**BodquerFool**</u> <u>Batch</u>

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4 Client Sample ID: HW-401S Date Sampled: 04/07/17 14:40

ESS Laboratory Work Order: 1704197 ESS Laboratory Sample ID: 1704197-15 Sample Matrix: Ground Water Units: %

Subcontracted Analysis

MDL

<u>Analyte</u> PFOS

<u>Results (MRL)</u> See Attached (N/A) Method Limit

DF

Analyst Analyzed Bo

BodquerFool Batch

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4 Client Sample ID: Equipment Blank Date Sampled: 04/05/17 10:00

ESS Laboratory Work Order: 1704197 ESS Laboratory Sample ID: 1704197-16 Sample Matrix: Aqueous Units: %

Subcontracted Analysis

MDL

<u>Analyte</u> PFOS

Results (MRL) See Attached (N/A) Method Limit

DF

Analyst Analyzed <u>Noquerry Batch</u>

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4

ESS Laboratory Work Order: 1704197

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
· · · · · · · · · · · · · · · · · · ·										
	8270D(SIM) 9	Semi-Volatile	Organic Co	ompounds	s w/ Isoto	pe Dilutio	on			
Batch CD71038 - 3535A										
Blank										
1,4-Dioxane	ND	0.250	ug/L							
Surrogate: 1,4-Dioxane-d8	3.08		ug/L	5.000		62	15-115			
LCS										
1,4-Dioxane	11.0	0.250	ug/L	10.00		110	40-140			
Surrogate: 1,4-Dioxane-d8	3.25		ug/L	5.000		65	15-115			
LCS Dup										
1,4-Dioxane	11.2	0.250	ug/L	10.00		112	40-140	2	20	
Surrogate: 1,4-Dioxane-d8	3.22		ug/L	5.000		64	15-115			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4

ESS Laboratory Work Order: 1704197

Notes and Definitions

Z-08	See Attached
U	Analyte included in the analysis, but not detected
PT	Pentachlorophenol tailing factor > 2 .
DDT	DDT breakdown > 20%
BT	Benzidine tailing factor >2.
ND	Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
MDL	Method Detection Limit
MRL	Method Reporting Limit
LOD LOQ	Limit of Detection Limit of Quantitation
DL	Detection Limit
I/V	Initial Volume
F/V	Final Volume
§	Subcontracted analysis; see attached report
1	Range result excludes concentrations of surrogates and/or internal standards eluting in that range.
2	Range result excludes concentrations of target analytes eluting in that range.
3	Range result excludes the concentration of the C9-C10 aromatic range.
Avg	Results reported as a mathematical average.
NR	No Recovery
[CALC]	Calculated Analyte
SUB	Subcontracted analysis; see attached report
RL	Reporting Limit

EDL Estimated Detection Limit

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4

ESS Laboratory Work Order: 1704197

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories/pdf/OutofStateCommercialLaboratories.pdf

> Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

> > Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

Your P.O. #: B02623 Your Project #: 1704197 Your C.O.C. #: 1704197

Attention:Shawn Morrell

ESS Laboratory 185 Frances Ave Cranston, RI USA 02910

> Report Date: 2017/05/01 Report #: R4444424 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B774990 Received: 2017/04/15, 14:19

Sample Matrix: GROUND WATER # Samples Received: 14

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
PFOS and PFOA in water	14	2017/04/19	2017/04/20	CAM SOP-00894	EPA 537 m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

- U = Undetected at the limit of quantitation.
- J = Estimated concentration between the EDL & RDL.
- B = Blank Contamination.
- Q = One or more quality control criteria failed.
- E = Analyte concentration exceeds the maximum concentration level.
- K = Estimated maximum possible concentration due to ion abundance ratio failure.

Your P.O. #: B02623 Your Project #: 1704197 Your C.O.C. #: 1704197

Attention:Shawn Morrell

ESS Laboratory 185 Frances Ave Cranston, RI USA 02910

> Report Date: 2017/05/01 Report #: R4444424 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B774990 Received: 2017/04/15, 14:19

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Melissa DiGrazia, Customer Experience Team Lead Email: MDiGrazia@maxxam.ca Phone# (905) 817-5700

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 2 Page 2 of 13

Report Date: 2017/05/01

ESS Laboratory Client Project #: 1704197 Your P.O. #: B02623

RESULTS OF ANALYSES OF GROUND WATER

Maxxam ID		EFH010	EFH011			EFH012			
Sampling Date		2017/04/05 10:30	2017/04/05 13:30			2017/04/05 14:30			
COC Number		1704197	1704197			1704197			
	UNITS	1704197-02	1704197-05	RDL	MDL	1704197-06	RDL	MDL	QC Batch
Miscellaneous Parameters									
6:2 Fluorotelomer sulfonate	ug/L	0.0038 J	0.47	0.020	0.0032	2.0 (1)	0.10	0.016	4944832
8:2 Fluorotelomer sulfonate	ug/L	0.0036 U	0.012 J	0.020	0.0036	0.0050 J	0.020	0.0036	4944832
Perfluorobutane Sulfonate (PFBS)	ug/L	0.0050 J	0.0048 U	0.020	0.0048	0.0048 U	0.020	0.0048	4944832
Perfluorobutanoic acid	ug/L	0.0066 U	0.089	0.020	0.0066	0.11	0.020	0.0066	4944832
Perfluorodecane Sulfonate	ug/L	0.0046 U	0.0046 U	0.020	0.0046	0.0046 U	0.020	0.0046	4944832
Perfluorodecanoic Acid (PFDA)	ug/L	0.0040 U	0.0040 U	0.020	0.0040	0.0040 U	0.020	0.0040	4944832
Perfluorododecanoic Acid (PFDoA)	ug/L	0.0028 U	0.0028 U	0.020	0.0028	0.0028 U	0.020	0.0028	4944832
Perfluoroheptanoic Acid (PFHpA)	ug/L	0.0070 J	0.10	0.020	0.0033	0.15	0.020	0.0033	4944832
Perfluorohexane Sulfonate (PFHxS)	ug/L	0.020	0.020 J	0.020	0.0034	0.042	0.020	0.0034	4944832
Perfluorohexanoic Acid (PFHxA)	ug/L	0.0094 J	0.28	0.020	0.0029	0.32	0.020	0.0029	4944832
Perfluoro-n-Octanoic Acid (PFOA)	ug/L	0.011 J	0.065	0.020	0.0046	0.053	0.020	0.0046	4944832
Perfluorononanoic Acid (PFNA)	ug/L	0.0046 U	0.027	0.020	0.0046	0.0087 J	0.020	0.0046	4944832
Perfluorooctane Sulfonamide (PFOSA)	ug/L	0.0036 U	0.0036 U	0.020	0.0036	0.0036 U	0.020	0.0036	4944832
Perfluorooctane Sulfonate (PFOS)	ug/L	0.043	0.15	0.020	0.0026	0.047	0.020	0.0026	4944832
Perfluoropentanoic Acid (PFPeA)	ug/L	0.017 J	0.39	0.020	0.0027	0.49	0.020	0.0027	4944832
Perfluorotetradecanoic Acid	ug/L	0.0038 U	0.0038 U	0.020	0.0038	0.0038 U	0.020	0.0038	4944832
Perfluorotridecanoic Acid	ug/L	0.0033 U	0.0033 U	0.020	0.0033	0.0033 U	0.020	0.0033	4944832
Perfluoroundecanoic Acid (PFUnA)	ug/L	0.0043 U	0.0043 U	0.020	0.0043	0.0043 U	0.020	0.0043	4944832
Surrogate Recovery (%)								•	-
13C4-Perfluorooctanesulfonate	%	97	88	N/A	N/A	76	N/A	N/A	4944832
13C4-Perfluorooctanoic acid	%	99	95	N/A	N/A	86	N/A	N/A	4944832
13C8-Perfluorooctane Sulfonamide	%	82	80	N/A	N/A	83	N/A	N/A	4944832
RDL = Reportable Detection Limit									

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Due to high concentration of the target analyte, sample required 5x dilution. Detection limit was adjusted accordingly.

ESS Laboratory Client Project #: 1704197 Your P.O. #: B02623

RESULTS OF ANALYSES OF GROUND WATER

Maxxam ID		EFH013			EFH014	EFH015			
Sampling Date		2017/04/05 15:00			2017/04/07 10:50	2017/04/07 09:55			
COC Number		1704197			1704197	1704197			
	UNITS	1704197-07	RDL	MDL	1704197-08	1704197-10	RDL	MDL	QC Batch
Miscellaneous Parameters									
6:2 Fluorotelomer sulfonate	ug/L	5.7 (1)	0.20	0.032	0.0032 U	0.0032 U	0.020	0.0032	4944832
8:2 Fluorotelomer sulfonate	ug/L	0.016 J	0.020	0.0036	0.0036 U	0.0036 U	0.020	0.0036	4944832
Perfluorobutane Sulfonate (PFBS)	ug/L	0.0048 U	0.020	0.0048	0.017 J	0.0077 J	0.020	0.0048	4944832
Perfluorobutanoic acid	ug/L	0.71	0.020	0.0066	0.012 J	0.040	0.020	0.0066	4944832
Perfluorodecane Sulfonate	ug/L	0.0046 U	0.020	0.0046	0.0046 U	0.0046 U	0.020	0.0046	4944832
Perfluorodecanoic Acid (PFDA)	ug/L	0.0040 U	0.020	0.0040	0.0040 U	0.0040 U	0.020	0.0040	4944832
Perfluorododecanoic Acid (PFDoA)	ug/L	0.0028 U	0.020	0.0028	0.0028 U	0.0028 U	0.020	0.0028	4944832
Perfluoroheptanoic Acid (PFHpA)	ug/L	0.34	0.020	0.0033	0.0048 J	0.049	0.020	0.0033	4944832
Perfluorohexane Sulfonate (PFHxS)	ug/L	0.019 J	0.020	0.0034	0.0079 J	0.044	0.020	0.0034	4944832
Perfluorohexanoic Acid (PFHxA)	ug/L	2.3 (1)	0.20	0.029	0.0092 J	0.13	0.020	0.0029	4944832
Perfluoro-n-Octanoic Acid (PFOA)	ug/L	0.075	0.020	0.0046	0.0046 U	0.0094 J	0.020	0.0046	4944832
Perfluorononanoic Acid (PFNA)	ug/L	0.0046 U	0.020	0.0046	0.0046 U	0.0046 U	0.020	0.0046	4944832
Perfluorooctane Sulfonamide (PFOSA)	ug/L	0.0036 U	0.020	0.0036	0.0036 U	0.0036 U	0.020	0.0036	4944832
Perfluorooctane Sulfonate (PFOS)	ug/L	0.0026 U	0.020	0.0026	0.0026 U	0.026	0.020	0.0026	4944832
Perfluoropentanoic Acid (PFPeA)	ug/L	3.8 (1)	0.20	0.027	0.027	0.14	0.020	0.0027	4944832
Perfluorotetradecanoic Acid	ug/L	0.0038 U	0.020	0.0038	0.0038 U	0.0046 J	0.020	0.0038	4944832
Perfluorotridecanoic Acid	ug/L	0.0033 U	0.020	0.0033	0.0033 U	0.0054 J	0.020	0.0033	4944832
Perfluoroundecanoic Acid (PFUnA)	ug/L	0.0043 U	0.020	0.0043	0.0043 U	0.0043 U	0.020	0.0043	4944832
Surrogate Recovery (%)									
13C4-Perfluorooctanesulfonate	%	78	N/A	N/A	76	78	N/A	N/A	4944832
13C4-Perfluorooctanoic acid	%	88	N/A	N/A	87	92	N/A	N/A	4944832
13C8-Perfluorooctane Sulfonamide	%	80	N/A	N/A	83	97	N/A	N/A	4944832
RDL = Reportable Detection Limit									

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Due to high concentration of the target analyte, sample required 10x dilution. Detection limit was adjusted accordingly.

ESS Laboratory Client Project #: 1704197 Your P.O. #: B02623

RESULTS OF ANALYSES OF GROUND WATER

Maxxam ID		EFH016		EFH017	EFH018	EFH019			
Sampling Date		2017/04/07		2017/04/07	2017/04/07	2017/04/07			
		10:45		12:50	14:20	14:40			
COC Number		1704197		1704197	1704197	1704197			
	UNITS	1704197-11	RDL	1704197-13	1704197-14	1704197-15	RDL	MDL	QC Batch
Miscellaneous Parameters									
6:2 Fluorotelomer sulfonate	ug/L	0.0037 J	0.020	0.0034 J	0.0032 U	0.0040 J	0.020	0.0032	4944832
8:2 Fluorotelomer sulfonate	ug/L	0.0036 U	0.020	0.0036 U	0.0036 U	0.0036 U	0.020	0.0036	4944832
Perfluorobutane Sulfonate (PFBS)	ug/L	0.0048 U	0.020	0.0048 U	0.0048 U	0.0048 U	0.020	0.0048	4944832
Perfluorobutanoic acid	ug/L	2.9 (1)	0.20	0.0066 U	0.0066 U	0.0066 U	0.020	0.0066	4944832
Perfluorodecane Sulfonate	ug/L	0.0046 U	0.020	0.0046 U	0.0046 U	0.0046 U	0.020	0.0046	4944832
Perfluorodecanoic Acid (PFDA)	ug/L	0.0040 U	0.020	0.0040 U	0.0040 U	0.0040 U	0.020	0.0040	4944832
Perfluorododecanoic Acid (PFDoA)	ug/L	0.0028 U	0.020	0.0028 U	0.0028 U	0.0028 U	0.020	0.0028	4944832
Perfluoroheptanoic Acid (PFHpA)	ug/L	0.0084 J	0.020	0.0033 U	0.0033 U	0.0043 J	0.020	0.0033	4944832
Perfluorohexane Sulfonate (PFHxS)	ug/L	0.018 J	0.020	0.0034 U	0.0089 J	0.011 J	0.020	0.0034	4944832
Perfluorohexanoic Acid (PFHxA)	ug/L	0.0029 U	0.020	0.0029 U	0.0029 U	0.0029 U	0.020	0.0029	4944832
Perfluoro-n-Octanoic Acid (PFOA)	ug/L	0.020 J	0.020	0.0046 U	0.0046 U	0.0046 U	0.020	0.0046	4944832
Perfluorononanoic Acid (PFNA)	ug/L	0.0046 U	0.020	0.0046 U	0.0046 U	0.0046 U	0.020	0.0046	4944832
Perfluorooctane Sulfonamide (PFOSA)	ug/L	0.0036 U	0.020	0.0036 U	0.0036 U	0.0036 U	0.020	0.0036	4944832
Perfluorooctane Sulfonate (PFOS)	ug/L	0.052	0.020	0.0026 U	0.022	0.012 J	0.020	0.0026	4944832
Perfluoropentanoic Acid (PFPeA)	ug/L	0.0027 U	0.020	0.0027 U	0.0027 U	0.0027 U	0.020	0.0027	4944832
Perfluorotetradecanoic Acid	ug/L	0.0038 U	0.020	0.0038 U	0.0038 U	0.0038 U	0.020	0.0038	4944832
Perfluorotridecanoic Acid	ug/L	0.0033 U	0.020	0.0033 U	0.0033 U	0.0033 U	0.020	0.0033	4944832
Perfluoroundecanoic Acid (PFUnA)	ug/L	0.0043 U	0.020	0.0043 U	0.0043 U	0.0043 U	0.020	0.0043	4944832
Surrogate Recovery (%)									
13C4-Perfluorooctanesulfonate	%	65 (2)	N/A	83	84	83	N/A	N/A	4944832
13C4-Perfluorooctanoic acid	%	81	N/A	100	88	81	N/A	N/A	4944832
13C8-Perfluorooctane Sulfonamide	%	74	N/A	82	92	82	N/A	N/A	4944832

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Due to high concentration of the target analyte, sample required 10x dilution. Detection limit was adjusted accordingly.

(2) Surrogate recovery was below the defined lower control limit (LCL). Laboratory spiked water resulted in satisfactory recovery of the surrogate. When considered together, these QC data suggest that matrix interferences may be biasing the data low. Because quantitation is performed using isotope dilution techniques, any losses of the native compound that may occur during any of the sample preparation, extraction, cleanup or determinative steps will be mirrored by a similar loss of the labeled standard, and as such can be accounted for and corrected. Therefore, the quantification of these target compounds is not affected by the low surrogate recovery.

ESS Laboratory Client Project #: 1704197 Your P.O. #: B02623

RESULTS OF ANALYSES OF GROUND WATER

Maxxam ID		EFH020	EFH021	EFH022	EFH023			
Sampling Date		2017/04/05	2017/04/11	2017/04/11	2017/04/11			
		10:00	12:20	10:20	15:30			
COC Number		1704197	1704197	1704197	1704197			
	UNITS	1704197-16	1704299-02	1704299-04	1704299-06	RDL	MDL	QC Batcl
Miscellaneous Parameters								
6:2 Fluorotelomer sulfonate	ug/L	0.0032 U	0.0032 U	0.0032 U	0.13	0.020	0.0032	4944832
8:2 Fluorotelomer sulfonate	ug/L	0.0036 U	0.0036 U	0.0036 U	0.0036 U	0.020	0.0036	4944832
Perfluorobutane Sulfonate (PFBS)	ug/L	0.0048 U	0.016 J	0.0055 J	0.0048 U	0.020	0.0048	4944832
Perfluorobutanoic acid	ug/L	0.0066 U	0.015 J	0.0066 U	0.021	0.020	0.0066	4944832
Perfluorodecane Sulfonate	ug/L	0.0046 U	0.0046 U	0.0046 U	0.0046 U	0.020	0.0046	4944832
Perfluorodecanoic Acid (PFDA)	ug/L	0.0040 U	0.0040 U	0.0040 U	0.0040 U	0.020	0.0040	4944832
Perfluorododecanoic Acid (PFDoA)	ug/L	0.0028 U	0.0028 U	0.0028 U	0.0028 U	0.020	0.0028	4944832
Perfluoroheptanoic Acid (PFHpA)	ug/L	0.0033 U	0.015 J	0.0051 J	0.034	0.020	0.0033	4944832
Perfluorohexane Sulfonate (PFHxS)	ug/L	0.0034 U	0.13	0.029	0.12	0.020	0.0034	4944832
Perfluorohexanoic Acid (PFHxA)	ug/L	0.0029 U	0.046	0.0060 J	0.041	0.020	0.0029	4944832
Perfluoro-n-Octanoic Acid (PFOA)	ug/L	0.0046 U	0.025	0.0046 U	0.055	0.020	0.0046	4944832
Perfluorononanoic Acid (PFNA)	ug/L	0.0046 U	0.0046 U	0.0060 J	0.059	0.020	0.0046	4944832
Perfluorooctane Sulfonamide (PFOSA)	ug/L	0.0036 U	0.0036 U	0.0036 U	0.0036 U	0.020	0.0036	4944832
Perfluorooctane Sulfonate (PFOS)	ug/L	0.0026 U	0.22	0.029	0.50	0.020	0.0026	4944832
Perfluoropentanoic Acid (PFPeA)	ug/L	0.0027 U	0.039	0.013 J	0.060	0.020	0.0027	4944832
Perfluorotetradecanoic Acid	ug/L	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.020	0.0038	4944832
Perfluorotridecanoic Acid	ug/L	0.0033 U	0.0033 U	0.0033 U	0.0033 U	0.020	0.0033	4944832
Perfluoroundecanoic Acid (PFUnA)	ug/L	0.0043 U	0.0043 U	0.0043 U	0.0043 U	0.020	0.0043	4944832
Surrogate Recovery (%)	· · ·							-
13C4-Perfluorooctanesulfonate	%	82	91	94	82	N/A	N/A	4944832
13C4-Perfluorooctanoic acid	%	96	94	92	88	N/A	N/A	4944832
13C8-Perfluorooctane Sulfonamide	%	82	86	95	89	N/A	N/A	4944832
RDL = Reportable Detection Limit	. 1		-		-		•	-
QC Batch = Quality Control Batch								
N/A = Not Applicable								

Page 6 of 13

ESS Laboratory Client Project #: 1704197 Your P.O. #: B02623

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	EFH010 1704197-02 GROUND WATER					Collected: Shipped: Received:	2017/04/05 2017/04/15
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
PFOS and PFOA in water		LCMS	4944832	2017/04/19	2017/04/20	Daniela Zu	pu
Maxxam ID: Sample ID: Matrix:	EFH011 1704197-05 GROUND WATER					Collected: Shipped: Received:	2017/04/05 2017/04/15
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
PFOS and PFOA in water		LCMS	4944832	2017/04/19	2017/04/20	Daniela Zu	pu
Maxxam ID: Sample ID: Matrix:	EFH012 1704197-06 GROUND WATER					Collected: Shipped: Received:	2017/04/05 2017/04/15
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
PFOS and PFOA in water		LCMS	4944832	2017/04/19	2017/04/20	Daniela Zu	pu
Maxxam ID: Sample ID: Matrix:	EFH013 1704197-07 GROUND WATER					Collected: Shipped: Received:	2017/04/05 2017/04/15
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
PFOS and PFOA in water		LCMS	4944832	2017/04/19	2017/04/20	Daniela Zu	pu
Maxxam ID: Sample ID: Matrix:	EFH014 1704197-08 GROUND WATER					Collected: Shipped: Received:	2017/04/07 2017/04/15
Test Description							
		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
PFOS and PFOA in water		Instrumentation LCMS	Batch 4944832	Extracted 2017/04/19	Date Analyzed 2017/04/20	Analyst Daniela Zu	ри
PFOS and PFOA in water Maxxam ID: Sample ID: Matrix:	EFH015 1704197-10 GROUND WATER				-	-	pu 2017/04/07 2017/04/15
Maxxam ID: Sample ID:	1704197-10				-	Daniela Zu Collected: Shipped:	2017/04/07
Maxxam ID: Sample ID: Matrix:	1704197-10	LCMS	4944832	2017/04/19	2017/04/20	Daniela Zu Collected: Shipped: Received:	2017/04/07 2017/04/15
Maxxam ID: Sample ID: Matrix: Test Description	1704197-10	LCMS	4944832 Batch	2017/04/19 Extracted	2017/04/20 Date Analyzed	Daniela Zu Collected: Shipped: Received: Analyst	2017/04/07 2017/04/15
Maxxam ID: Sample ID: Matrix: Test Description PFOS and PFOA in water Maxxam ID: Sample ID:	1704197-10 GROUND WATER EFH016 1704197-11	LCMS	4944832 Batch	2017/04/19 Extracted	2017/04/20 Date Analyzed	Daniela Zu Collected: Shipped: Received: Analyst Daniela Zu Collected: Shipped:	2017/04/07 2017/04/15 pu 2017/04/07

ESS Laboratory Client Project #: 1704197 Your P.O. #: B02623

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	EFH017 1704197-13 GROUND WATER					Collected: Shipped: Received:	2017/04/07 2017/04/15
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
PFOS and PFOA in water		LCMS	4944832	2017/04/19	2017/04/20	Daniela Zu	ри
Maxxam ID: Sample ID: Matrix:	EFH018 1704197-14 GROUND WATER					Collected: Shipped: Received:	2017/04/07 2017/04/15
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
PFOS and PFOA in water		LCMS	4944832	2017/04/19	2017/04/20	Daniela Zu	pu
Maxxam ID: Sample ID: Matrix:	EFH019 1704197-15 GROUND WATER					Collected: Shipped: Received:	2017/04/07 2017/04/15
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
PFOS and PFOA in water		LCMS	4944832	2017/04/19	2017/04/20	Daniela Zu	pu
Maxxam ID: Sample ID: Matrix:	EFH020 1704197-16 GROUND WATER					Collected: Shipped: Received:	2017/04/05 2017/04/15
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
PFOS and PFOA in water		LCMS	4944832	2017/04/19	2017/04/20	Daniela Zu	pu
Maxxam ID: Sample ID: Matrix:	EFH021 1704299-02 GROUND WATER					Collected: Shipped: Received:	2017/04/11 2017/04/15
Test Description							
DEOC and DEOA in contain		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
PFOS and PFOA in water		Instrumentation LCMS	Batch 4944832	Extracted 2017/04/19	Date Analyzed 2017/04/20	Analyst Daniela Zu	pu
Maxxam ID: Sample ID: Matrix:	EFH022 1704299-04 GROUND WATER				•	-	pu 2017/04/11 2017/04/15
Maxxam ID: Sample ID:	1704299-04				•	Daniela Zu Collected: Shipped:	2017/04/11
Maxxam ID: Sample ID: Matrix:	1704299-04	LCMS	4944832	2017/04/19	2017/04/20	Daniela Zu Collected: Shipped: Received:	2017/04/11 2017/04/15
Maxxam ID: Sample ID: Matrix: Test Description	1704299-04	LCMS	4944832 Batch	2017/04/19 Extracted	2017/04/20 Date Analyzed	Daniela Zu Collected: Shipped: Received: Analyst	2017/04/11 2017/04/15
Maxxam ID: Sample ID: Matrix: Test Description PFOS and PFOA in water Maxxam ID: Sample ID:	1704299-04 GROUND WATER EFH023 1704299-06	LCMS	4944832 Batch	2017/04/19 Extracted	2017/04/20 Date Analyzed	Daniela Zu Collected: Shipped: Received: Analyst Daniela Zu Collected: Shipped:	2017/04/11 2017/04/15 pu 2017/04/11

Maxxam Job #: B7/4990 Report Date: 2017/05/01 ESS Laboratory Client Project #: 1704197 Your P.O. #: B02623

GENERAL COMMENTS

TBLK-EPEU-20161219 received however not listed on CoC. Sample will remain on hold as per client request.

Minimal sample volume received for 1704197-16. Please note this may result in elevated DLs.

Results relate only to the items tested.

ESS Laboratory Client Project #: 1704197 Your P.O. #: B02623

QUALITY ASSURANCE REPORT

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4944832	DZU	Spiked Blank	13C4-Perfluorooctanesulfonate	2017/04/20		92	%	70 - 130
			13C4-Perfluorooctanoic acid	2017/04/20		102	%	70 - 130
			13C8-Perfluorooctane Sulfonamide	2017/04/20		86	%	60 - 120
			6:2 Fluorotelomer sulfonate	2017/04/20		84	%	70 - 130
			8:2 Fluorotelomer sulfonate	2017/04/20		87	%	70 - 130
			Perfluorobutane Sulfonate (PFBS)	2017/04/20		99	%	70 - 130
			Perfluorobutanoic acid	2017/04/20		82	%	70 - 130
			Perfluorodecane Sulfonate	2017/04/20		87	%	70 - 130
			Perfluoroheptanoic Acid (PFHpA)	2017/04/20		93	%	70 - 130
			Perfluorohexane Sulfonate (PFHxS)	2017/04/20		97	%	70 - 130
			Perfluorohexanoic Acid (PFHxA)	2017/04/20		103	%	70 - 130
			Perfluorononanoic Acid (PFNA)	2017/04/20		97	%	70 - 130
			Perfluorooctane Sulfonamide (PFOSA)	2017/04/20		91	%	70 - 130
			Perfluoropentanoic Acid (PFPeA)	2017/04/20		94	%	70 - 130
			Perfluorotetradecanoic Acid	2017/04/20		91	%	70 - 130
			Perfluorotridecanoic Acid	2017/04/20		84	%	70 - 130
			Perfluoroundecanoic Acid (PFUnA)	2017/04/20		100	%	70 - 130
			Perfluorodecanoic Acid (PFDA)	2017/04/20		101	%	70 - 130
			Perfluorododecanoic Acid (PFDoA)	2017/04/20		109	%	70 - 130
			Perfluoro-n-Octanoic Acid (PFOA)	2017/04/20		97	%	70 - 130
			Perfluorooctane Sulfonate (PFOS)	2017/04/20		94	%	70 - 130
4944832	DZU	Spiked Blank DUP	13C4-Perfluorooctanesulfonate	2017/04/20		93	%	70 - 130
			13C4-Perfluorooctanoic acid	2017/04/20		107	%	70 - 130
			13C8-Perfluorooctane Sulfonamide	2017/04/20		86	%	60 - 120
			6:2 Fluorotelomer sulfonate	2017/04/20		88	%	70 - 130
			8:2 Fluorotelomer sulfonate	2017/04/20		93	%	70 - 130
			Perfluorobutane Sulfonate (PFBS)	2017/04/20		102	%	70 - 130
			Perfluorobutanoic acid	2017/04/20		97	%	70 - 130
			Perfluorodecane Sulfonate	2017/04/20		87	%	70 - 130
			Perfluoroheptanoic Acid (PFHpA)	2017/04/20		100	%	70 - 130
			Perfluorohexane Sulfonate (PFHxS)	2017/04/20		93	%	70 - 130
			Perfluorohexanoic Acid (PFHxA)	2017/04/20		106	%	70 - 130
			Perfluorononanoic Acid (PFNA)	2017/04/20		95	%	70 - 130
			Perfluorooctane Sulfonamide (PFOSA)	2017/04/20		97	%	70 - 130
			Perfluoropentanoic Acid (PFPeA)	2017/04/20		98	%	70 - 130
			Perfluorotetradecanoic Acid	2017/04/20		102	%	70 - 130
			Perfluorotridecanoic Acid	2017/04/20		95	%	70 - 130
			Perfluoroundecanoic Acid (PFUnA)	2017/04/20		107	%	70 - 130
			Perfluorodecanoic Acid (PFDA)	2017/04/20		97	%	70 - 130
			Perfluorododecanoic Acid (PFDoA)	2017/04/20		98	%	70 - 130
			Perfluoro-n-Octanoic Acid (PFOA)	2017/04/20		92	%	70 - 130
	D7 11		Perfluorooctane Sulfonate (PFOS)	2017/04/20	= 4	87	%	70 - 130
4944832	DZU	RPD	6:2 Fluorotelomer sulfonate	2017/04/20	5.1		%	30
			8:2 Fluorotelomer sulfonate	2017/04/20	6.4		%	30
			Perfluorobutane Sulfonate (PFBS)	2017/04/20	3.2		%	30
			Perfluorobutanoic acid	2017/04/20	16		%	30
			Perfluorodecane Sulfonate	2017/04/20	0.23		%	30 20
			Perfluoroheptanoic Acid (PFHpA)	2017/04/20	7.7		%	30
			Perfluorohexane Sulfonate (PFHxS)	2017/04/20	4.8		%	30
			Perfluorohexanoic Acid (PFHxA)	2017/04/20	3.2		%	30
			Perfluorononanoic Acid (PFNA)	2017/04/20	2.3		%	30 20
			Perfluorooctane Sulfonamide (PFOSA)	2017/04/20	5.5		%	30
			Perfluoropentanoic Acid (PFPeA)	2017/04/20	4.2		%	30

Page 10 of 13

ESS Laboratory Client Project #: 1704197 Your P.O. #: B02623

QUALITY ASSURANCE REPORT(CONT'D)

a . /a a						24		
QA/QC	114	007.00	Developmenter	Date) / = l	%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery		QC Limits
			Perfluorotetradecanoic Acid	2017/04/20	12		%	30
			Perfluorotridecanoic Acid	2017/04/20	13		%	30
			Perfluoroundecanoic Acid (PFUnA)	2017/04/20	7.0		%	30
			Perfluorodecanoic Acid (PFDA)	2017/04/20	4.0		%	30
			Perfluorododecanoic Acid (PFDoA)	2017/04/20	10		%	30
			Perfluoro-n-Octanoic Acid (PFOA)	2017/04/20	5.5		%	30
4944832		Method Blank	Perfluorooctane Sulfonate (PFOS) 13C4-Perfluorooctanesulfonate	2017/04/20	6.9	00	% %	30 70 - 130
4944832	DZU	Method Blank	13C4-Perfluorooctanoic acid	2017/04/20 2017/04/20		88 93	% %	
			13C4-Perfluorooctanoic acid 13C8-Perfluorooctane Sulfonamide	2017/04/20 2017/04/20		93 86	% %	70 - 130
			6:2 Fluorotelomer sulfonate		0.0022.11	80		60 - 120
				2017/04/20	0.0032 U, MDL=0.0032		ug/L	
			8:2 Fluorotelomer sulfonate	2017/04/20	0.0036 U, MDL=0.0036		ug/L	
			Perfluorobutane Sulfonate (PFBS)	2017/04/20	0.0048 U, MDL=0.0048		ug/L	
			Perfluorobutanoic acid	2017/04/20	0.0066 U <i>,</i> MDL=0.0066		ug/L	
			Perfluorodecane Sulfonate	2017/04/20	0.0046 U, MDL=0.0046		ug/L	
			Perfluoroheptanoic Acid (PFHpA)	2017/04/20	0.0033 U, MDL=0.0033		ug/L	
			Perfluorohexane Sulfonate (PFHxS)	2017/04/20	0.0034 U, MDL=0.0034		ug/L	
			Perfluorohexanoic Acid (PFHxA)	2017/04/20	0.0029 U, MDL=0.0029		ug/L	
			Perfluorononanoic Acid (PFNA)	2017/04/20	0.0046 U, MDL=0.0046		ug/L	
			Perfluorooctane Sulfonamide (PFOSA)	2017/04/20	0.0036 U, MDL=0.0036		ug/L	
			Perfluoropentanoic Acid (PFPeA)	2017/04/20	0.0027 U, MDL=0.0027		ug/L	
			Perfluorotetradecanoic Acid	2017/04/20	0.0038 U, MDL=0.0038		ug/L	
			Perfluorotridecanoic Acid	2017/04/20	0.0033 U, MDL=0.0033		ug/L	
			Perfluoroundecanoic Acid (PFUnA)	2017/04/20	0.0043 U, MDL=0.0043		ug/L	
			Perfluorodecanoic Acid (PFDA)	2017/04/20	0.0040 U, MDL=0.0040		ug/L	
			Perfluorododecanoic Acid (PFDoA)	2017/04/20	0.0028 U, MDL=0.0028		ug/L	
			Perfluoro-n-Octanoic Acid (PFOA)	2017/04/20	0.0046 U, MDL=0.0046		ug/L	

ESS Laboratory Client Project #: 1704197 Your P.O. #: B02623

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Perfluorooctane Sulfonate (PFOS)	2017/04/20	0.0026 U,		ug/L	
					MDL=0.0026			
•	Blank: A	,	a separate portion of the same sample. Used to evaluate sample to which a known amount of the analyte, usually			ed. Used to e	valuate	nethod
Method	Blank:	A blank matri	x containing all reagents used in the analytical procedur	e. Used to identify la	boratory contam	ination.		

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

ESS Laboratory Client Project #: 1704197 Your P.O. #: B02623

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Colm McNamara, Senior Analyst, Liquid Chromatography

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

ESS	ESS Laborator	atory			CHAIN	IN OF	$\mathbf{\nabla}$	CUST	TODY	Х	Pa	Page 1	of 2	1
Division	of Thielsch E	Division of Thielsch Engineering, Inc.			Turn Time <u>S</u> standard Other <u>I</u> f faster than 5 days, prior approval by laboratory is required #	dard Other oval by laboratory i	r is required	#	Report	Reporting Limits	<u>а (</u>	ESS LAB PROJECT ID	ECT ID	
185 Frai Tel. (401	185 Frances Avenue, (Tel. (401) 461-7181	185 Frances Avenue, Cranston, KJ 02910-2211 Tel. (401) 461-7181 Fax (401) 461-4486	4486		State where samples were collected from: MA RI CT NH NI NY	ted from: NY ME	Other			uw - (Flattonic Delitemble		10419		
www.ess				Is this p MA-M(Is this project for any of the following: MA-MCP	SACE	Other		Format:	:: Excel 2 Access	cess	PDF & Other	1	
Co. Name				Project #	Project Name (20 Char. or less)	-				Write Ree	Write Required Analysis	is		,
S'AL	3	MITTER GRUPP		17027	BARA. UN-CAUL	AU # 4								-
Contact Person	is grow			Address 90 Rt	60 6		12							
City	City Sours wie u	State MAD		Zip ک 26 ح			• •	uers	} u -\y;					
Telephone # 508 &	# 833 6600	Fax # 50 ξ	833	3,50	Email Address thear @horsleywi	slay witter.		Contai S	XOICI					
ESS LAB Sample #		Collection Time COMP	CRAB MATRIX	Sample	Sample Identification (20 Char. or less)	Pres	Number Code	Type of	h'\					
	4/5/17	{o(}	m7 a	42 - M2				ά	×					
3	415/17	ن کړ	K Ku	HW-YW	5		114	4 1 2	X					
3	415/17	1122	F kw	102 - MA	270	-	7 1	4	x					I
יד די	415/17	1300	4 hu	AW-190	0	1)	ر	×					
Ś	4/15/17	1330	4 kw	HW-3			1 2	8						
9	4 <i> 5 </i> 17	1430	t ku	HW-E			1	2						
\sim	415/17	nesi	4 ku	HW-F		ļ	i I F	8						
16	415/17	1000	8	FUUPMEN	ar BLANK	-	ر ا	R						1
Container	Container Type: (P-Poly) &	G-Glass S-Sterile V-VOA		Matrix: S-Soil SD-Solid	D-Sludge	WW-Waste Water GW-G	GW-Ground Water		SW-Surface Water	r DW-Drinking Water		0-0il W-Wipes	s F-Filters	1.0
Cooler Present	sent Yes	No N	Internal Use Only		Preservation Code (-NF) 2- HC1, 3- H2O0, 4- HNO3, 5- NaOH, 6- MeOH, 7- Asorbic Acid, 8- ZnAct,	R 2- HC1, 3- H ₂ S	O4, 4- HN	103, 5- N	aOH, 6- Me	OH, 7- Asorbic	c Acid, 8- ZnA	lot, 9-		
Seals Intact	tYes	No NA:	[] Pickup	<u> </u>	Sampled by:									
Cooler Ten	1p: 3.9 C 42	Cooler Temp: 3.9 C & 2.3 ° E 1 CE 24/10/14] Technicians.	1[f_] Techr		Comments:							-		
Felingy dist	Kelingviished by: (Signature)	Date/Time	Received	Received by: (Signature)	Date/Time	Relinquished by:	(Signature)	4/10	Date/Time 17 1011	1 CONTR	r: (Signature)	401C	ate/Time	
Refinquish	Refinquished by: (Signature)	Date/Time	Received	by: (Signature)	Date/Time	Kelinquished by.	(Signature)	· _ · _ ·	Date/Time	Rederved by	r: (Signature)	7 Dat	ate/Time	
*By circlin in accorda	g MA-MCP, client a nce with MADEP C	*By citcling MA-MCP, client acknowledges samples were collected in accordance with MADEP CAM VII A	ere collected		Please fax all changes to Chain of Custody in writing.	hain of Custody in	writing.			1 (Whit	1 (White) Lab Copy	2 (Yellow) Client Receipt 10/26/04.	ent Receipt 10/26/04 A	۲

10/26/04 A

oratory	ch Engineering, Inc.
Lab	of Thielsch
SS	ivision (

CHAIN OF CUSTODY

J	
of	
2	
Page	

		L	,	•)		/ (4	- -		
ਜ	ıgıneering, İnc. kanston, RI 02910-22	Iurn Iu If faster	ne <u>V</u> Standard Other than 5 days, prior approval by laboratory is required #	Other atory is requ	ired #		<u>×</u>	Keporting Limits $\tilde{\mathcal{L}} \sim \tilde{\mathcal{L}}$	mits		DOLPO	<u>a</u>
Tel. (401) 461-7181 J	Fax (401) 461-4486	-	MA RI CT NH NI NY ME	E Other	er		ū	Petronie	Flectronic Deliverable	2	No V	
www.esslaboratory.com	ų	Is this project MA-MCP	he following: y U!		5			ormat: E	Format: Excel Access		Other	
Co. Name		Project #	Project Name (20 Char. or less)		┝	┝			Write Requi	Write Required Analysis		
Hantin Histonah	er anot	5	GARN. UN-CAN -	μų								
Contact Person U 4555 Vrr		Address q d M	64	-	s		3					
2	State MA	Zip Ursb 3	PO#			sian	3 241					
Telephone # 509 533 6600	Fax # 508 53	3 3150	Email Address i bear <(a) hors ley with	my v			(0171					
ESS LAB Date Sample#	Collection Time COMP COMP	Sample Ide		Pres	iəquin _N	Type of						
8 4/7/17	m a asha	HW-A (5)		1	1 P	*						
5117112	0930 × 60	H- MH		-	2 4		۶					
4121 O1	0955 × KW	Hw - B (s)		/	1 6	$\overset{\star}{\sim}$						
も/も 11	NOHS KU	HW-S		1	1 P	X						
EILEN CI	my x n211	(1) HW-B(0)		1	2 6	₩,	X					
13 417/17	1250 7 KW	HW - C		1	1 6	\star						
F) F H H	1420 F EW	HW-D			1 8	X						
15 4/2/17	1440 × EW	210H-WH		1	4	X						
]						
Container Type: (P-Daly &-GlAss	kss S-Sterile V-VOA Matrix:	S-Soil SD-Solid	D-Sludge WW-Waste Water	W-Groupd Water	ađ Wate		SW-Surface Water		DW-Drinking Water	lio-o	W-Wipes F-H	F-Filters
Cooler Present 1	No Internal Use Only		Preservation Code: 1-NP 2- HCl, 3- H/SO4, 4- HNO3, 5- NaOH, 6- MeOH, 7- Asorbic Acid, 8-	- H2SO4, 4-	HNO3,	5- Na(ЭН, 6- N	feOH, 7-	Asorbic Acid,	8- ZnAct, 9-		
Seals Intact Yes	No NA: 🖌 [] Pickup	IP Sampled by:	An it in									
Cooler Temp: 3, 9°C a 3.3°C (CSU/10/17) Technicians	3°C 1CS44/10/14) Techr	nicians Comments:	ents: HW-B(0)	۰۱ <mark>۱</mark>		DIOX An E	માર	kt vo	(frof) k			
Refinquished by: (Signature)	H + Time Receive	Received by: (Signature)	1/7/171 1545 Relinquish	iedby: ((Signature)	4	Date/Time /0//11 /1	ne 1/1/		ignature)	HOT 16	me 1649
Rehandshed by: (Signature)		Received by: (Signature)	Date/Time Relinqu	Relinquished by: (Signature)	ignatur	()	Date/Time	JIC	Re eived by: (5	ignature)	Date/Time	ne
*By circling MA-MCP, client acknowledges samples were collected in accordance with MADEP CAM VII A	iowledges samples were collected		Please fax all changes to Chain of Custody in writing.	ody in writi	лу.				1 (White) Lab Copy		2 (Yellow) Client Receipt	Receipt
יער יקאיטען וווא סטונטוטענ וון												10/26/04 A

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Jesse Bean Horsley & Witten 90 Route 6A Sandwich, MA 02563

RE: Barn. On-Call #4 (17027) ESS Laboratory Work Order Number: 1704299

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director

Analytical Summary

REVIEWED By ESS Laboratory at 3:18 pm, May 17, 2017

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

Subcontracted Analyses Maxxam Analytics - Cheektowaga, NY

PFOS

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4

ESS Laboratory Work Order: 1704299

SAMPLE RECEIPT

The following samples were received on April 12, 2017 for the analyses specified on the enclosed Chain of Custody Record.

Matrix

Ground Water

Ground Water

Ground Water

Ground Water

Ground Water

Ground Water

Lab Number 1704299-01 1704299-02 1704299-03 1704299-04 1704299-05 1704299-06

Sample Name OW-18M OW-18D OW-19D OW-19D OW-19M OW-9DD

ıe

Analysis 8270D SIM \$, 8270D SIM 8270D SIM \$ 8270D SIM \$, 8270D SIM

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4

ESS Laboratory Work Order: 1704299

PROJECT NARRATIVE

No unusual observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4

ESS Laboratory Work Order: 1704299

CURRENT SW-846 METHODOLOGY VERSIONS

Prep Methods

Analytical Methods

1010A - Flashpoint 6010C - ICP 6020A - ICP MS 7010 - Graphite Furnace 7196A - Hexavalent Chromium 7470A - Aqueous Mercury 7471B - Solid Mercury 8011 - EDB/DBCP/TCP 8015C - GRO/DRO 8081B - Pesticides 8082A - PCB 8100M - TPH 8151A - Herbicides 8260B - VOA 8270D - SVOA 8270D SIM - SVOA Low Level 9014 - Cyanide 9038 - Sulfate 9040C - Aqueous pH 9045D - Solid pH (Corrosivity) 9050A - Specific Conductance 9056A - Anions (IC) 9060A - TOC 9095B - Paint Filter MADEP 04-1.1 - EPH / VPH

3005A - Aqueous ICP Digestion
3020A - Aqueous Graphite Furnace / ICP MS Digestion
3050B - Solid ICP / Graphite Furnace / ICP MS Digestion
3060A - Solid Hexavalent Chromium Digestion
3510C - Separatory Funnel Extraction
3520C - Liquid / Liquid Extraction
3540C - Manual Soxhlet Extraction
3541 - Automated Soxhlet Extraction
3546 - Microwave Extraction
3580A - Waste Dilution
5030B - Aqueous Purge and Trap
5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4 Client Sample ID: OW-18M Date Sampled: 04/11/17 10:40 Percent Solids: N/A Initial Volume: 500 Final Volume: 0.5 Extraction Method: 3535A

ESS Laboratory Work Order: 1704299 ESS Laboratory Sample ID: 1704299-01 Sample Matrix: Ground Water Units: ug/L Analyst: VSC Prepared: 4/13/17 16:00

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

<u>Analyte</u> 1,4-Dioxane	<u>Results (MRL)</u> ND (0.250)	<u>MDL</u>	Method 8270D SIM	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 04/15/17 4:24	Sequence C7D0233	<u>Batch</u> CD71343
	%Re	ecovery	Qualifier	Limits				
Surrogate: 1,4-Dioxane-d8		65 %		15-115				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4 Client Sample ID: OW-18D Date Sampled: 04/11/17 12:20 Percent Solids: N/A Initial Volume: 500 Final Volume: 0.5 Extraction Method: 3535A

ESS Laboratory Work Order: 1704299 ESS Laboratory Sample ID: 1704299-02 Sample Matrix: Ground Water Units: ug/L Analyst: VSC Prepared: 4/13/17 16:00

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

<u>Analyte</u> 1,4-Dioxane	Results (MRL) MDI 0.552 (0.250)	<u>Method</u> 8270D SIM	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 04/15/17 5:01	Sequence C7D0233	<u>Batch</u> CD71343
	%Recovery	Qualifier	Limits				
Surrogate: 1,4-Dioxane-d8	59 %		15-115				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4 Client Sample ID: OW-18D Date Sampled: 04/11/17 12:20

ESS Laboratory Work Order: 1704299 ESS Laboratory Sample ID: 1704299-02 Sample Matrix: Ground Water Units: %

Subcontracted Analysis

MDL

<u>Analyte</u> PFOS

Results (MRL) See Attached (N/A) <u>Method</u> <u>Limit</u>

DF

Analyst Analyzed <u>NoquerFood Batch</u>

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4 Client Sample ID: OW-19D Date Sampled: 04/11/17 10:00 Percent Solids: N/A Initial Volume: 500 Final Volume: 0.5 Extraction Method: 3535A

ESS Laboratory Work Order: 1704299 ESS Laboratory Sample ID: 1704299-03 Sample Matrix: Ground Water Units: ug/L Analyst: VSC Prepared: 4/13/17 16:00

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

<u>Analyte</u> 1,4-Dioxane	Results (MRL) MDI 0.800 (0.250)	<u>Method</u> 8270D SIM	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 04/15/17 5:37	Sequence C7D0233	<u>Batch</u> CD71343
	%Recovery	Qualifier	Limits				
Surrogate: 1,4-Dioxane-d8	65 %		15-115				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4 Client Sample ID: OW-19D Date Sampled: 04/11/17 10:20

ESS Laboratory Work Order: 1704299 ESS Laboratory Sample ID: 1704299-04 Sample Matrix: Ground Water Units: %

Subcontracted Analysis

MDL

<u>Analyte</u> PFOS

Results (MRL) See Attached (N/A) <u>Method</u> <u>Limit</u>

DF

Analyst Analyzed Bodquer Batch

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4 Client Sample ID: OW-19M Date Sampled: 04/11/17 11:40 Percent Solids: N/A Initial Volume: 500 Final Volume: 0.5 Extraction Method: 3535A

ESS Laboratory Work Order: 1704299 ESS Laboratory Sample ID: 1704299-05 Sample Matrix: Ground Water Units: ug/L Analyst: VSC Prepared: 4/13/17 16:00

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

<u>Analyte</u> 1,4-Dioxane	Results (MRL) MD ND (0.250) MD	L <u>Method</u> 8270D SIM	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 04/15/17 6:12	Sequence C7D0233	<u>Batch</u> CD71343
	%Recovery	Qualifier	Limits				
Surrogate: 1,4-Dioxane-d8	61 %		15-115				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4 Client Sample ID: OW-9DD Date Sampled: 04/11/17 15:30 Percent Solids: N/A Initial Volume: 500 Final Volume: 0.5 Extraction Method: 3535A

ESS Laboratory Work Order: 1704299 ESS Laboratory Sample ID: 1704299-06 Sample Matrix: Ground Water Units: ug/L Analyst: VSC Prepared: 4/13/17 16:00

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

<u>Analyte</u> 1,4-Dioxane	Results (MRL) MDI 0.838 (0.250)	L <u>Method</u> 8270D SIM	<u>Limit</u>	DF 1	<u>Analyzed</u> 04/15/17 6:47	Sequence C7D0233	<u>Batch</u> CD71343
	%Recovery	Qualifier	Limits				
Surrogate: 1,4-Dioxane-d8	62 %		15-115				

DF

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4 Client Sample ID: OW-9DD Date Sampled: 04/11/17 15:30

ESS Laboratory Work Order: 1704299 ESS Laboratory Sample ID: 1704299-06 Sample Matrix: Ground Water Units: %

Subcontracted Analysis

<u>Analyte</u> PFOS Results (MRL) See Attached (N/A) MDL

Method Limit

Analyst Analyzed Bodquer Batch

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4

ESS Laboratory Work Order: 1704299

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
	8270D(SIM) 5	Semi-Volatile	Organic Co	ompounds	s w/ Isoto	pe Dilutio	on			
Batch CD71343 - 3535A										
Blank										
1,4-Dioxane	ND	0.250	ug/L							
Surrogate: 1,4-Dioxane-d8	2.42		ug/L	5.000		48	15-115			
LCS										
1,4-Dioxane	11.6	0.250	ug/L	10.00		116	40-140			
Surrogate: 1,4-Dioxane-d8	3.00		ug/L	5.000		60	15-115			
LCS Dup										
1,4-Dioxane	11.3	0.250	ug/L	10.00		113	40-140	2	20	
Surrogate: 1,4-Dioxane-d8	3.29		ug/L	5.000		66	15-115			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4

ESS Laboratory Work Order: 1704299

Notes and Definitions

Z-08	See Attached
U	Analyte included in the analysis, but not detected
ND	Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
MDL	Method Detection Limit
MRL	Method Reporting Limit
LOD	Limit of Detection
LOQ	Limit of Quantitation
DL	Detection Limit
I/V	Initial Volume
F/V	Final Volume
§	Subcontracted analysis; see attached report
1	Range result excludes concentrations of surrogates and/or internal standards eluting in that range.
2	Range result excludes concentrations of target analytes eluting in that range.
3	Range result excludes the concentration of the C9-C10 aromatic range.
Avg	Results reported as a mathematical average.
NR	No Recovery
[CALC]	Calculated Analyte
SUB	Subcontracted analysis; see attached report
RL	Reporting Limit
EDL	Estimated Detection Limit

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4

ESS Laboratory Work Order: 1704299

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories/pdf/OutofStateCommercialLaboratories.pdf

> Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

> > Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

Your P.O. #: B02623 Your Project #: 1704197 Your C.O.C. #: 1704197

Attention:Shawn Morrell

ESS Laboratory 185 Frances Ave Cranston, RI USA 02910

> Report Date: 2017/05/01 Report #: R4444424 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B774990 Received: 2017/04/15, 14:19

Sample Matrix: GROUND WATER # Samples Received: 14

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
PFOS and PFOA in water	14	2017/04/19	2017/04/20	CAM SOP-00894	EPA 537 m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

- U = Undetected at the limit of quantitation.
- J = Estimated concentration between the EDL & RDL.
- B = Blank Contamination.
- Q = One or more quality control criteria failed.
- E = Analyte concentration exceeds the maximum concentration level.
- K = Estimated maximum possible concentration due to ion abundance ratio failure.

Your P.O. #: B02623 Your Project #: 1704197 Your C.O.C. #: 1704197

Attention:Shawn Morrell

ESS Laboratory 185 Frances Ave Cranston, RI USA 02910

> Report Date: 2017/05/01 Report #: R4444424 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B774990 Received: 2017/04/15, 14:19

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Melissa DiGrazia, Customer Experience Team Lead Email: MDiGrazia@maxxam.ca Phone# (905) 817-5700

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

ESS Laboratory Client Project #: 1704197 Your P.O. #: B02623

RESULTS OF ANALYSES OF GROUND WATER

Maxxam ID		EFH010	EFH011			EFH012			
Sampling Date		2017/04/05 10:30	2017/04/05 13:30			2017/04/05 14:30			
COC Number		1704197	1704197			1704197			
	UNITS	1704197-02	1704197-05	RDL	MDL	1704197-06	RDL	MDL	QC Batch
Miscellaneous Parameters									
6:2 Fluorotelomer sulfonate	ug/L	0.0038 J	0.47	0.020	0.0032	2.0 (1)	0.10	0.016	4944832
8:2 Fluorotelomer sulfonate	ug/L	0.0036 U	0.012 J	0.020	0.0036	0.0050 J	0.020	0.0036	4944832
Perfluorobutane Sulfonate (PFBS)	ug/L	0.0050 J	0.0048 U	0.020	0.0048	0.0048 U	0.020	0.0048	4944832
Perfluorobutanoic acid	ug/L	0.0066 U	0.089	0.020	0.0066	0.11	0.020	0.0066	4944832
Perfluorodecane Sulfonate	ug/L	0.0046 U	0.0046 U	0.020	0.0046	0.0046 U	0.020	0.0046	4944832
Perfluorodecanoic Acid (PFDA)	ug/L	0.0040 U	0.0040 U	0.020	0.0040	0.0040 U	0.020	0.0040	4944832
Perfluorododecanoic Acid (PFDoA)	ug/L	0.0028 U	0.0028 U	0.020	0.0028	0.0028 U	0.020	0.0028	4944832
Perfluoroheptanoic Acid (PFHpA)	ug/L	0.0070 J	0.10	0.020	0.0033	0.15	0.020	0.0033	4944832
Perfluorohexane Sulfonate (PFHxS)	ug/L	0.020	0.020 J	0.020	0.0034	0.042	0.020	0.0034	4944832
Perfluorohexanoic Acid (PFHxA)	ug/L	0.0094 J	0.28	0.020	0.0029	0.32	0.020	0.0029	4944832
Perfluoro-n-Octanoic Acid (PFOA)	ug/L	0.011 J	0.065	0.020	0.0046	0.053	0.020	0.0046	4944832
Perfluorononanoic Acid (PFNA)	ug/L	0.0046 U	0.027	0.020	0.0046	0.0087 J	0.020	0.0046	4944832
Perfluorooctane Sulfonamide (PFOSA)	ug/L	0.0036 U	0.0036 U	0.020	0.0036	0.0036 U	0.020	0.0036	4944832
Perfluorooctane Sulfonate (PFOS)	ug/L	0.043	0.15	0.020	0.0026	0.047	0.020	0.0026	4944832
Perfluoropentanoic Acid (PFPeA)	ug/L	0.017 J	0.39	0.020	0.0027	0.49	0.020	0.0027	4944832
Perfluorotetradecanoic Acid	ug/L	0.0038 U	0.0038 U	0.020	0.0038	0.0038 U	0.020	0.0038	4944832
Perfluorotridecanoic Acid	ug/L	0.0033 U	0.0033 U	0.020	0.0033	0.0033 U	0.020	0.0033	4944832
Perfluoroundecanoic Acid (PFUnA)	ug/L	0.0043 U	0.0043 U	0.020	0.0043	0.0043 U	0.020	0.0043	4944832
Surrogate Recovery (%)			•						
13C4-Perfluorooctanesulfonate	%	97	88	N/A	N/A	76	N/A	N/A	4944832
13C4-Perfluorooctanoic acid	%	99	95	N/A	N/A	86	N/A	N/A	4944832
13C8-Perfluorooctane Sulfonamide	%	82	80	N/A	N/A	83	N/A	N/A	4944832
RDL = Reportable Detection Limit									

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Due to high concentration of the target analyte, sample required 5x dilution. Detection limit was adjusted accordingly.

ESS Laboratory Client Project #: 1704197 Your P.O. #: B02623

RESULTS OF ANALYSES OF GROUND WATER

Maxxam ID		EFH013			EFH014	EFH015			
Sampling Date		2017/04/05 15:00			2017/04/07 10:50	2017/04/07 09:55			
COC Number		1704197			1704197	1704197			
	UNITS	1704197-07	RDL	MDL	1704197-08	1704197-10	RDL	MDL	QC Batch
Miscellaneous Parameters									
6:2 Fluorotelomer sulfonate	ug/L	5.7 (1)	0.20	0.032	0.0032 U	0.0032 U	0.020	0.0032	4944832
8:2 Fluorotelomer sulfonate	ug/L	0.016 J	0.020	0.0036	0.0036 U	0.0036 U	0.020	0.0036	4944832
Perfluorobutane Sulfonate (PFBS)	ug/L	0.0048 U	0.020	0.0048	0.017 J	0.0077 J	0.020	0.0048	4944832
Perfluorobutanoic acid	ug/L	0.71	0.020	0.0066	0.012 J	0.040	0.020	0.0066	4944832
Perfluorodecane Sulfonate	ug/L	0.0046 U	0.020	0.0046	0.0046 U	0.0046 U	0.020	0.0046	4944832
Perfluorodecanoic Acid (PFDA)	ug/L	0.0040 U	0.020	0.0040	0.0040 U	0.0040 U	0.020	0.0040	4944832
Perfluorododecanoic Acid (PFDoA)	ug/L	0.0028 U	0.020	0.0028	0.0028 U	0.0028 U	0.020	0.0028	4944832
Perfluoroheptanoic Acid (PFHpA)	ug/L	0.34	0.020	0.0033	0.0048 J	0.049	0.020	0.0033	4944832
Perfluorohexane Sulfonate (PFHxS)	ug/L	0.019 J	0.020	0.0034	0.0079 J	0.044	0.020	0.0034	4944832
Perfluorohexanoic Acid (PFHxA)	ug/L	2.3 (1)	0.20	0.029	0.0092 J	0.13	0.020	0.0029	4944832
Perfluoro-n-Octanoic Acid (PFOA)	ug/L	0.075	0.020	0.0046	0.0046 U	0.0094 J	0.020	0.0046	4944832
Perfluorononanoic Acid (PFNA)	ug/L	0.0046 U	0.020	0.0046	0.0046 U	0.0046 U	0.020	0.0046	4944832
Perfluorooctane Sulfonamide (PFOSA)	ug/L	0.0036 U	0.020	0.0036	0.0036 U	0.0036 U	0.020	0.0036	4944832
Perfluorooctane Sulfonate (PFOS)	ug/L	0.0026 U	0.020	0.0026	0.0026 U	0.026	0.020	0.0026	4944832
Perfluoropentanoic Acid (PFPeA)	ug/L	3.8 (1)	0.20	0.027	0.027	0.14	0.020	0.0027	4944832
Perfluorotetradecanoic Acid	ug/L	0.0038 U	0.020	0.0038	0.0038 U	0.0046 J	0.020	0.0038	4944832
Perfluorotridecanoic Acid	ug/L	0.0033 U	0.020	0.0033	0.0033 U	0.0054 J	0.020	0.0033	4944832
Perfluoroundecanoic Acid (PFUnA)	ug/L	0.0043 U	0.020	0.0043	0.0043 U	0.0043 U	0.020	0.0043	4944832
Surrogate Recovery (%)									
13C4-Perfluorooctanesulfonate	%	78	N/A	N/A	76	78	N/A	N/A	4944832
13C4-Perfluorooctanoic acid	%	88	N/A	N/A	87	92	N/A	N/A	4944832
13C8-Perfluorooctane Sulfonamide	%	80	N/A	N/A	83	97	N/A	N/A	4944832
RDL = Reportable Detection Limit						-			

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Due to high concentration of the target analyte, sample required 10x dilution. Detection limit was adjusted accordingly.

ESS Laboratory Client Project #: 1704197 Your P.O. #: B02623

RESULTS OF ANALYSES OF GROUND WATER

Maxxam ID		EFH016		EFH017	EFH018	EFH019			
Sampling Date		2017/04/07		2017/04/07	2017/04/07	2017/04/07			
		10:45		12:50	14:20	14:40			
COC Number		1704197		1704197	1704197	1704197			
	UNITS	1704197-11	RDL	1704197-13	1704197-14	1704197-15	RDL	MDL	QC Batch
Miscellaneous Parameters									
6:2 Fluorotelomer sulfonate	ug/L	0.0037 J	0.020	0.0034 J	0.0032 U	0.0040 J	0.020	0.0032	4944832
8:2 Fluorotelomer sulfonate	ug/L	0.0036 U	0.020	0.0036 U	0.0036 U	0.0036 U	0.020	0.0036	4944832
Perfluorobutane Sulfonate (PFBS)	ug/L	0.0048 U	0.020	0.0048 U	0.0048 U	0.0048 U	0.020	0.0048	4944832
Perfluorobutanoic acid	ug/L	2.9 (1)	0.20	0.0066 U	0.0066 U	0.0066 U	0.020	0.0066	4944832
Perfluorodecane Sulfonate	ug/L	0.0046 U	0.020	0.0046 U	0.0046 U	0.0046 U	0.020	0.0046	4944832
Perfluorodecanoic Acid (PFDA)	ug/L	0.0040 U	0.020	0.0040 U	0.0040 U	0.0040 U	0.020	0.0040	4944832
Perfluorododecanoic Acid (PFDoA)	ug/L	0.0028 U	0.020	0.0028 U	0.0028 U	0.0028 U	0.020	0.0028	4944832
Perfluoroheptanoic Acid (PFHpA)	ug/L	0.0084 J	0.020	0.0033 U	0.0033 U	0.0043 J	0.020	0.0033	4944832
Perfluorohexane Sulfonate (PFHxS)	ug/L	0.018 J	0.020	0.0034 U	0.0089 J	0.011 J	0.020	0.0034	4944832
Perfluorohexanoic Acid (PFHxA)	ug/L	0.0029 U	0.020	0.0029 U	0.0029 U	0.0029 U	0.020	0.0029	4944832
Perfluoro-n-Octanoic Acid (PFOA)	ug/L	0.020 J	0.020	0.0046 U	0.0046 U	0.0046 U	0.020	0.0046	4944832
Perfluorononanoic Acid (PFNA)	ug/L	0.0046 U	0.020	0.0046 U	0.0046 U	0.0046 U	0.020	0.0046	4944832
Perfluorooctane Sulfonamide (PFOSA)	ug/L	0.0036 U	0.020	0.0036 U	0.0036 U	0.0036 U	0.020	0.0036	4944832
Perfluorooctane Sulfonate (PFOS)	ug/L	0.052	0.020	0.0026 U	0.022	0.012 J	0.020	0.0026	4944832
Perfluoropentanoic Acid (PFPeA)	ug/L	0.0027 U	0.020	0.0027 U	0.0027 U	0.0027 U	0.020	0.0027	4944832
Perfluorotetradecanoic Acid	ug/L	0.0038 U	0.020	0.0038 U	0.0038 U	0.0038 U	0.020	0.0038	4944832
Perfluorotridecanoic Acid	ug/L	0.0033 U	0.020	0.0033 U	0.0033 U	0.0033 U	0.020	0.0033	4944832
Perfluoroundecanoic Acid (PFUnA)	ug/L	0.0043 U	0.020	0.0043 U	0.0043 U	0.0043 U	0.020	0.0043	4944832
Surrogate Recovery (%)									
13C4-Perfluorooctanesulfonate	%	65 (2)	N/A	83	84	83	N/A	N/A	4944832
13C4-Perfluorooctanoic acid	%	81	N/A	100	88	81	N/A	N/A	4944832
13C8-Perfluorooctane Sulfonamide	%	74	N/A	82	92	82	N/A	N/A	4944832

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Due to high concentration of the target analyte, sample required 10x dilution. Detection limit was adjusted accordingly.

(2) Surrogate recovery was below the defined lower control limit (LCL). Laboratory spiked water resulted in satisfactory recovery of the surrogate. When considered together, these QC data suggest that matrix interferences may be biasing the data low. Because quantitation is performed using isotope dilution techniques, any losses of the native compound that may occur during any of the sample preparation, extraction, cleanup or determinative steps will be mirrored by a similar loss of the labeled standard, and as such can be accounted for and corrected. Therefore, the quantification of these target compounds is not affected by the low surrogate recovery.

ESS Laboratory Client Project #: 1704197 Your P.O. #: B02623

RESULTS OF ANALYSES OF GROUND WATER

Maxxam ID		EFH020	EFH021	EFH022	EFH023			
Sampling Date		2017/04/05	2017/04/11	2017/04/11	2017/04/11			
		10:00	12:20	10:20	15:30			
COC Number		1704197	1704197	1704197	1704197			
	UNITS	1704197-16	1704299-02	1704299-04	1704299-06	RDL	MDL	QC Batch
Miscellaneous Parameters								
6:2 Fluorotelomer sulfonate	ug/L	0.0032 U	0.0032 U	0.0032 U	0.13	0.020	0.0032	4944832
8:2 Fluorotelomer sulfonate	ug/L	0.0036 U	0.0036 U	0.0036 U	0.0036 U	0.020	0.0036	4944832
Perfluorobutane Sulfonate (PFBS)	ug/L	0.0048 U	0.016 J	0.0055 J	0.0048 U	0.020	0.0048	4944832
Perfluorobutanoic acid	ug/L	0.0066 U	0.015 J	0.0066 U	0.021	0.020	0.0066	4944832
Perfluorodecane Sulfonate	ug/L	0.0046 U	0.0046 U	0.0046 U	0.0046 U	0.020	0.0046	4944832
Perfluorodecanoic Acid (PFDA)	ug/L	0.0040 U	0.0040 U	0.0040 U	0.0040 U	0.020	0.0040	4944832
Perfluorododecanoic Acid (PFDoA)	ug/L	0.0028 U	0.0028 U	0.0028 U	0.0028 U	0.020	0.0028	4944832
Perfluoroheptanoic Acid (PFHpA)	ug/L	0.0033 U	0.015 J	0.0051 J	0.034	0.020	0.0033	4944832
Perfluorohexane Sulfonate (PFHxS)	ug/L	0.0034 U	0.13	0.029	0.12	0.020	0.0034	4944832
Perfluorohexanoic Acid (PFHxA)	ug/L	0.0029 U	0.046	0.0060 J	0.041	0.020	0.0029	4944832
Perfluoro-n-Octanoic Acid (PFOA)	ug/L	0.0046 U	0.025	0.0046 U	0.055	0.020	0.0046	4944832
Perfluorononanoic Acid (PFNA)	ug/L	0.0046 U	0.0046 U	0.0060 J	0.059	0.020	0.0046	4944832
Perfluorooctane Sulfonamide (PFOSA)	ug/L	0.0036 U	0.0036 U	0.0036 U	0.0036 U	0.020	0.0036	4944832
Perfluorooctane Sulfonate (PFOS)	ug/L	0.0026 U	0.22	0.029	0.50	0.020	0.0026	4944832
Perfluoropentanoic Acid (PFPeA)	ug/L	0.0027 U	0.039	0.013 J	0.060	0.020	0.0027	4944832
Perfluorotetradecanoic Acid	ug/L	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.020	0.0038	4944832
Perfluorotridecanoic Acid	ug/L	0.0033 U	0.0033 U	0.0033 U	0.0033 U	0.020	0.0033	4944832
Perfluoroundecanoic Acid (PFUnA)	ug/L	0.0043 U	0.0043 U	0.0043 U	0.0043 U	0.020	0.0043	4944832
Surrogate Recovery (%)								
13C4-Perfluorooctanesulfonate	%	82	91	94	82	N/A	N/A	4944832
13C4-Perfluorooctanoic acid	%	96	94	92	88	N/A	N/A	4944832
13C8-Perfluorooctane Sulfonamide	%	82	86	95	89	N/A	N/A	4944832
RDL = Reportable Detection Limit	. 1		-		-		•	-
QC Batch = Quality Control Batch								
N/A = Not Applicable								

ESS Laboratory Client Project #: 1704197 Your P.O. #: B02623

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	EFH010 1704197-02 GROUND WATER					Collected: Shipped: Received:	2017/04/05 2017/04/15
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
PFOS and PFOA in water		LCMS	4944832	2017/04/19	2017/04/20	Daniela Zu	pu
Maxxam ID: Sample ID: Matrix:	EFH011 1704197-05 GROUND WATER					Collected: Shipped: Received:	2017/04/05 2017/04/15
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
PFOS and PFOA in water		LCMS	4944832	2017/04/19	2017/04/20	Daniela Zupu	
Maxxam ID: Sample ID: Matrix:	EFH012 1704197-06 GROUND WATER					Collected: Shipped: Received:	2017/04/05 2017/04/15
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
PFOS and PFOA in water		LCMS	4944832	2017/04/19	2017/04/20	Daniela Zu	pu
Maxxam ID: Sample ID: Matrix:	EFH013 1704197-07 GROUND WATER					Collected: Shipped: Received:	2017/04/05 2017/04/15
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
PFOS and PFOA in water		LCMS	4944832	2017/04/19	2017/04/20	Daniela Zu	pu
Maxxam ID: Sample ID: Matrix:	EFH014 1704197-08 GROUND WATER					Collected: Shipped: Received:	2017/04/07 2017/04/15
Test Description							2017/04/13
-		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	2017/04/13
PFOS and PFOA in water		Instrumentation LCMS	Batch 4944832	Extracted 2017/04/19	Date Analyzed 2017/04/20		
-	EFH015 1704197-10 GROUND WATER				-	Analyst	
PFOS and PFOA in water Maxxam ID: Sample ID:	1704197-10				-	Analyst Daniela Zu Collected: Shipped:	pu 2017/04/07
PFOS and PFOA in water Maxxam ID: Sample ID: Matrix:	1704197-10	LCMS	4944832	2017/04/19	2017/04/20	Analyst Daniela Zu Collected: Shipped: Received:	pu 2017/04/07 2017/04/15
PFOS and PFOA in water Maxxam ID: Sample ID: Matrix: Test Description	1704197-10	LCMS	4944832 Batch	2017/04/19 Extracted	2017/04/20 Date Analyzed	Analyst Daniela Zu Collected: Shipped: Received: Analyst	pu 2017/04/07 2017/04/15
PFOS and PFOA in water Maxxam ID: Sample ID: Matrix: Test Description PFOS and PFOA in water Maxxam ID: Sample ID:	1704197-10 GROUND WATER EFH016 1704197-11	LCMS	4944832 Batch	2017/04/19 Extracted	2017/04/20 Date Analyzed	Analyst Daniela Zu Collected: Shipped: Received: Analyst Daniela Zu Collected: Shipped:	pu 2017/04/07 2017/04/15 pu 2017/04/07

ESS Laboratory Client Project #: 1704197 Your P.O. #: B02623

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	EFH017 1704197-13 GROUND WATER					Collected: Shipped: Received:	2017/04/07 2017/04/15
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
PFOS and PFOA in water		LCMS	4944832	2017/04/19	2017/04/20	Daniela Zu	pu
Maxxam ID: Sample ID: Matrix:	EFH018 1704197-14 GROUND WATER					Collected: Shipped: Received:	2017/04/07 2017/04/15
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
PFOS and PFOA in water		LCMS	4944832	2017/04/19	2017/04/20	Daniela Zupu	
Maxxam ID: Sample ID: Matrix:	EFH019 1704197-15 GROUND WATER					Collected: Shipped: Received:	2017/04/07 2017/04/15
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
PFOS and PFOA in water		LCMS	4944832	2017/04/19	2017/04/20	Daniela Zu	pu
Maxxam ID: Sample ID: Matrix:	EFH020 1704197-16 GROUND WATER					Collected: Shipped: Received:	2017/04/05 2017/04/15
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
PFOS and PFOA in water		LCMS	4944832	2017/04/19	2017/04/20	Daniela Zu	pu
Maxxam ID: Sample ID: Matrix:	EFH021 1704299-02 GROUND WATER					Collected: Shipped: Received:	2017/04/11 2017/04/15
Test Description						neceiveu.	2017/04/15
-		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	2017/04/15
PFOS and PFOA in water		Instrumentation LCMS	Batch 4944832	Extracted 2017/04/19	Date Analyzed 2017/04/20		
-	EFH022 1704299-04 GROUND WATER				•	Analyst	
PFOS and PFOA in water Maxxam ID: Sample ID:	1704299-04				•	Analyst Daniela Zu Collected: Shipped:	pu 2017/04/11
PFOS and PFOA in water Maxxam ID: Sample ID: Matrix:	1704299-04	LCMS	4944832	2017/04/19	2017/04/20	Analyst Daniela Zu Collected: Shipped: Received:	pu 2017/04/11 2017/04/15
PFOS and PFOA in water Maxxam ID: Sample ID: Matrix: Test Description	1704299-04	LCMS	4944832 Batch	2017/04/19 Extracted	2017/04/20 Date Analyzed	Analyst Daniela Zu Collected: Shipped: Received: Analyst	pu 2017/04/11 2017/04/15
PFOS and PFOA in water Maxxam ID: Sample ID: Matrix: Test Description PFOS and PFOA in water Maxxam ID: Sample ID:	1704299-04 GROUND WATER EFH023 1704299-06	LCMS	4944832 Batch	2017/04/19 Extracted	2017/04/20 Date Analyzed	Analyst Daniela Zu Collected: Shipped: Received: Analyst Daniela Zu Collected: Shipped:	pu 2017/04/11 2017/04/15 pu 2017/04/11

Maxxam Job #: B7/4990 Report Date: 2017/05/01 ESS Laboratory Client Project #: 1704197 Your P.O. #: B02623

GENERAL COMMENTS

TBLK-EPEU-20161219 received however not listed on CoC. Sample will remain on hold as per client request.

Minimal sample volume received for 1704197-16. Please note this may result in elevated DLs.

Results relate only to the items tested.

ESS Laboratory Client Project #: 1704197 Your P.O. #: B02623

QUALITY ASSURANCE REPORT

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4944832	DZU	Spiked Blank	13C4-Perfluorooctanesulfonate	2017/04/20		92	%	70 - 130
			13C4-Perfluorooctanoic acid	2017/04/20		102	%	70 - 130
			13C8-Perfluorooctane Sulfonamide	2017/04/20		86	%	60 - 120
			6:2 Fluorotelomer sulfonate	2017/04/20		84	%	70 - 130
			8:2 Fluorotelomer sulfonate	2017/04/20		87	%	70 - 130
			Perfluorobutane Sulfonate (PFBS)	2017/04/20		99	%	70 - 130
			Perfluorobutanoic acid	2017/04/20		82	%	70 - 130
			Perfluorodecane Sulfonate	2017/04/20		87	%	70 - 130
			Perfluoroheptanoic Acid (PFHpA)	2017/04/20		93	%	70 - 130
			Perfluorohexane Sulfonate (PFHxS)	2017/04/20		97	%	70 - 130
			Perfluorohexanoic Acid (PFHxA)	2017/04/20		103	%	70 - 130
			Perfluorononanoic Acid (PFNA)	2017/04/20		97	%	70 - 130
			Perfluorooctane Sulfonamide (PFOSA)	2017/04/20		91	%	70 - 130
			Perfluoropentanoic Acid (PFPeA)	2017/04/20		94	%	70 - 130
			Perfluorotetradecanoic Acid	2017/04/20		91	%	70 - 130
			Perfluorotridecanoic Acid	2017/04/20		84	%	70 - 130
			Perfluoroundecanoic Acid (PFUnA)	2017/04/20		100	%	70 - 130
			Perfluorodecanoic Acid (PFDA)	2017/04/20		101	%	70 - 130
			Perfluorododecanoic Acid (PFDoA)	2017/04/20		109	%	70 - 130
			Perfluoro-n-Octanoic Acid (PFOA)	2017/04/20		97	%	70 - 130
			Perfluorooctane Sulfonate (PFOS)	2017/04/20		94	%	70 - 130
4944832	DZU	Spiked Blank DUP	13C4-Perfluorooctanesulfonate	2017/04/20		93	%	70 - 130
			13C4-Perfluorooctanoic acid	2017/04/20		107	%	70 - 130
			13C8-Perfluorooctane Sulfonamide	2017/04/20		86	%	60 - 120
			6:2 Fluorotelomer sulfonate	2017/04/20		88	%	70 - 130
			8:2 Fluorotelomer sulfonate	2017/04/20		93	%	70 - 130
			Perfluorobutane Sulfonate (PFBS)	2017/04/20		102	%	70 - 130
			Perfluorobutanoic acid	2017/04/20		97	%	70 - 130
			Perfluorodecane Sulfonate	2017/04/20		87	%	70 - 130
			Perfluoroheptanoic Acid (PFHpA)	2017/04/20		100	%	70 - 130
			Perfluorohexane Sulfonate (PFHxS)	2017/04/20		93	%	70 - 130
			Perfluorohexanoic Acid (PFHxA)	2017/04/20		106	%	70 - 130
			Perfluorononanoic Acid (PFNA)	2017/04/20		95	%	70 - 130
			Perfluorooctane Sulfonamide (PFOSA)	2017/04/20		97	%	70 - 130
			Perfluoropentanoic Acid (PFPeA)	2017/04/20		98	%	70 - 130
			Perfluorotetradecanoic Acid	2017/04/20		102	%	70 - 130
			Perfluorotridecanoic Acid	2017/04/20		95	%	70 - 130
			Perfluoroundecanoic Acid (PFUnA)	2017/04/20		107	%	70 - 130
			Perfluorodecanoic Acid (PFDA)	2017/04/20		97	%	70 - 130
			Perfluorododecanoic Acid (PFDoA)	2017/04/20		98	%	70 - 130
			Perfluoro-n-Octanoic Acid (PFOA)	2017/04/20		92	%	70 - 130
	D7 11		Perfluorooctane Sulfonate (PFOS)	2017/04/20	= 4	87	%	70 - 130
4944832	DZU	RPD	6:2 Fluorotelomer sulfonate	2017/04/20	5.1		%	30
			8:2 Fluorotelomer sulfonate	2017/04/20	6.4		%	30
			Perfluorobutane Sulfonate (PFBS)	2017/04/20	3.2		%	30
			Perfluorobutanoic acid	2017/04/20	16		%	30
			Perfluorodecane Sulfonate	2017/04/20	0.23		%	30 20
			Perfluoroheptanoic Acid (PFHpA)	2017/04/20	7.7		%	30
			Perfluorohexane Sulfonate (PFHxS)	2017/04/20	4.8		%	30
			Perfluorohexanoic Acid (PFHxA)	2017/04/20	3.2		%	30
			Perfluorononanoic Acid (PFNA)	2017/04/20	2.3		%	30 20
			Perfluorooctane Sulfonamide (PFOSA)	2017/04/20	5.5		%	30
			Perfluoropentanoic Acid (PFPeA)	2017/04/20	4.2		%	30

Page 10 of 13

ESS Laboratory Client Project #: 1704197 Your P.O. #: B02623

QUALITY ASSURANCE REPORT(CONT'D)

a . /a a						24		
QA/QC	114	007.00	Developmenter	Date) / = l	%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery		QC Limits
			Perfluorotetradecanoic Acid	2017/04/20	12		%	30
			Perfluorotridecanoic Acid	2017/04/20	13		%	30
			Perfluoroundecanoic Acid (PFUnA)	2017/04/20	7.0		%	30
			Perfluorodecanoic Acid (PFDA)	2017/04/20	4.0		%	30
			Perfluorododecanoic Acid (PFDoA)	2017/04/20	10		%	30
			Perfluoro-n-Octanoic Acid (PFOA)	2017/04/20	5.5		%	30
4944832		Method Blank	Perfluorooctane Sulfonate (PFOS) 13C4-Perfluorooctanesulfonate	2017/04/20	6.9	00	% %	30 70 - 130
4944832	DZU	Method Blank	13C4-Perfluorooctanoic acid	2017/04/20 2017/04/20		88 93	% %	
			13C4-Perfluorooctanoic acid 13C8-Perfluorooctane Sulfonamide	2017/04/20 2017/04/20		93 86	% %	70 - 130
			6:2 Fluorotelomer sulfonate		0.0022.11	80		60 - 120
				2017/04/20	0.0032 U, MDL=0.0032		ug/L	
			8:2 Fluorotelomer sulfonate	2017/04/20	0.0036 U, MDL=0.0036		ug/L	
			Perfluorobutane Sulfonate (PFBS)	2017/04/20	0.0048 U, MDL=0.0048		ug/L	
			Perfluorobutanoic acid	2017/04/20	0.0066 U <i>,</i> MDL=0.0066		ug/L	
			Perfluorodecane Sulfonate	2017/04/20	0.0046 U, MDL=0.0046		ug/L	
			Perfluoroheptanoic Acid (PFHpA)	2017/04/20	0.0033 U, MDL=0.0033		ug/L	
			Perfluorohexane Sulfonate (PFHxS)	2017/04/20	0.0034 U, MDL=0.0034		ug/L	
			Perfluorohexanoic Acid (PFHxA)	2017/04/20	0.0029 U, MDL=0.0029		ug/L	
			Perfluorononanoic Acid (PFNA)	2017/04/20	0.0046 U, MDL=0.0046		ug/L	
			Perfluorooctane Sulfonamide (PFOSA)	2017/04/20	0.0036 U, MDL=0.0036		ug/L	
			Perfluoropentanoic Acid (PFPeA)	2017/04/20	0.0027 U, MDL=0.0027		ug/L	
			Perfluorotetradecanoic Acid	2017/04/20	0.0038 U, MDL=0.0038		ug/L	
			Perfluorotridecanoic Acid	2017/04/20	0.0033 U, MDL=0.0033		ug/L	
			Perfluoroundecanoic Acid (PFUnA)	2017/04/20	0.0043 U, MDL=0.0043		ug/L	
			Perfluorodecanoic Acid (PFDA)	2017/04/20	0.0040 U, MDL=0.0040		ug/L	
			Perfluorododecanoic Acid (PFDoA)	2017/04/20	0.0028 U, MDL=0.0028		ug/L	
			Perfluoro-n-Octanoic Acid (PFOA)	2017/04/20	0.0046 U, MDL=0.0046		ug/L	

ESS Laboratory Client Project #: 1704197 Your P.O. #: B02623

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date		%										
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits								
			Perfluorooctane Sulfonate (PFOS)	2017/04/20	0.0026 U,		ug/L									
					MDL=0.0026											
Spiked B	Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement. Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.															
Method	Blank:	A blank mat	Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.													

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

Page 12 of 13

ESS Laboratory Client Project #: 1704197 Your P.O. #: B02623

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Colm McNamara, Senior Analyst, Liquid Chromatography

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

ESS La	borator	y	MAXX	AM	CH	AIN OF	CUS	TODY		ESS Lab	#	1704:	299			-		
Division of T	hielsch Eng	ineering, Inc.		Turn Time	Sta	ndard O	ther				Ren	orting	Limit	is - G	iW-'	1		
185 Frances	Avenue,Cr	anston RI 0291	0-2211	Regulatory S	itate: MA Ri	CT NH NJ N	Y ME	Other				orang						
Tel. (401)46 www.esslabe		x (401)461-448	36			owing:(please cil E CT DEP				Ε	lectonic Del	iverabl	les E	xcel	Acce	ess P	DF	
Co. Name		ESS Laboratory		Project #		Project Name		1704299										
Contact Person		Shawn Morre	11	Proj. Location		:				Analysis	1							
Address			City , State			Zip		PO# B02	623	Ana								
Tel.	ext 3083		email: srr	norrell@thiel	sch.com							s					ŀ	
ESS Lab ID	Date	Collection Time	Grab -G Composite-C	Matrix	Sam	ple ID	Pres Code	# of Containers	Type of Container	Vol of Container		PFOS						
	4/11/17	1220		GW	17042	299-02	1	1	Р			X						
	4/11/17	1020		GW	17042	299-04	1	1	Р			X			┝╼╍╍╉			
	4/11/17	1530		GW	17042	299-06	1	1	Р			X	<u> </u>		┝──┨			
			<u> </u>				<u> </u>					ļ	<u> </u>				_	
						-							ļ				_	
,													-					
															┟──┤	-	_	
		· · · · ·													┢──┨		+	
						<u></u>			<u> </u>			-			\vdash		+	<u> </u>
			-		i 	•		<u>}</u>			<u> </u>		+		┟──┪			
			<u> </u>		Martin C Call (SD-Solid D-Sludge W		ior GM Ground	vater SW-Surf	face Water DW	Drinking Wa	ater 0-0	l Oil W-	Wipes	E-Filte	r .		
		Amber Glass S-Sterile A		Internal Us		Preservation Cod						-						
		No_NA:		[] Pickup	,	Sampled by												
Cooler Tem	perature:			[] Technic	ian	Comments:						•						
Relinquished by (S	ignature, Date & Th	13/17 1500	Received by: (Sig	nature, Date & Time)		Relinguish	ed by: (Signature), Date & Time)	Received b	y: (Sign	ature, I	Date &	Time)			
Relizquished by: (S		1 :0 -	-	nature, Date & Time)		Relinquish	ed by: (Signature	e, Date & Time)	Received b	y: (Sign	ature, i	Date &	Time)	-		
	CP, client acknowle dence with MADEP	dges sampels were CAM VIIA	Report I	Method Bl		e laboratory all c oratory Co				•				<u></u>				

,

g wales to the

19

10.00

and the second

 $\{(x,y)\in \{1,2\}, j\}$

 $(1) \in \mathcal{B}$

ESS	Labora	atory						CH	AIN ()F	C	CU	S'	Г(DD)Y			Pa	nge		_ of _	
Division	of Thielsch En ces Avenue, C	igineering, I	Inc.	010	\ ` 7 7		n Time aster than	∑∑S n 5 days, prior ap	tandard (proval by laborate	Other _	eauirea	i #		Ţ	Reportin					ESS LA			
Tel. (401)) 461-7181 I	Fax (401) 4	.1 02 61-4	910 1480	5-22 6	Sim	ts where s	samples were col	lected from: NJ NY ME							- س				170		<u>-1</u>	1
	aboratory.con					Is t	his projec	et for any of the	following: USAC)ther_				Electron Format:						NoNo		
Co. Name				_	-	Project #		Project Name (2	0 Char. or less)	<u>e</u> 0									ed Ana				
HURSI	-54 WIT	TEN GR	~~~	P		17027	-	BARN. UN	-caret	\$4						—					ГТ	— —	
Contact Pers	ion EBran					Address 90 R	r é	A															
City SAND	SWICH	State MA				OZST	63	PO# _			ntainers	ners	Ŧ										
Telephone #	833 6600	Fax S	- 68 (Z 3	ን፡	הא	ţ	Email Address	ley withen	~	r of Co	Contai	DICK	S									
ESS LAB Sample#	Date	Collection Time	COMP	GRAB	MATRIX	5		lentification (20 0	•	Pres Code		Type of Containers	ו, ע	BA									
	4/11/7	1040		×	ĥIJ					١	2	4	4										
2	4/11/17	1220		۴	hin	ow-	18 D			11	21	G P	\star	X									
3	4/11/7-	1060		×	ħω	00-	190			1	2	9	$\mathbf{\lambda}$									\top	
4	4/11/17	1020		٢	an	0~	-190	· · · · · · · · · · · · · · · · · · ·		1	۱	Ρ		X								1	
5	4/11/17	1140		4	ƙω	UN	-19~	۸		١	2	9	arphi										
6	4/11/17	1530		X	úw	OW	9 DD	>		11	21	G.P	X	X									
		l_,																					
Container T	ypy. P-Poly G-G	lans S-Sterile	V-VO	A	Matrix	:: S-Soil SI)-Solid	D-Sludge WW	V-Waste Water	W-Gro	und	/ater	SW-Su	ırface	Water	DW-D	rinkinş	g Wato	er O-(⊃il W	'-Wipes	F-F	ilters
Cooler Press	ent Yes	No	/	Inter	nal U	se Only	Preser	vation Code: 1-	1 2- HCI, 3- I	H₂SO₄,	4- HN	O3, 5-	NaOł	H, 6-	MeOH,	7- Asc	orbic A	cid, 8	- ZnAc	:t, 9			
Seals Intact	Yes	NO NA: 🕽	(Picku	P	Sampl	led by: (f	/										_				
Cooler Tem	28	anc		[]'	Techn	icians	Comm	nents:											Λ			P	
Relinguisho	by: (Signature)	Date/Tim 4/11/17	63		eceive	d by: (Signatu	· / r	Date/Tim		hed by:	(Sign	Hure)	YG	Date/	^{Time}	Rec	ceived b	0 Y (81	gnature) 41	In Pa	ite/Tin	me 1127
Refinquisho	ed by: (Signature)	Date/Tim	_		eceive	ed by: (Signatu		Date/Tim		Ked by:	(Signa	uure)	Ē	<u>10 / </u> Date/] 	i <u>ine</u>	Re	in the second	by: (Si	gnature	, †		ute/Tin	
*By circling	MA-MCR client ack		ac wor		lected		Diana	(Chain of Custor		iiina		_	_		17.							

*By circling MA-MCP, client acknowledges samples were collected in accordance with MADEP CAM VII A Please fax all changes to Chain of Custody in writing.

1 (White) Lab Copy 2 (Yellow) CRagered of 31

ivision of Ti		neering, Inc.	MAXX	Turn Time	Sta	AIN OF (Indard Oth	ner			ESS Lab a	*	ting Limit	s - GN	/-1					
el. (401)46 ww.esslabo		anston RI 0291 (401)461-448	36	Is this project fo	any of the foll	owing (please circ E CT DEP (Project Name	ie)	1704299		Ele	ectonic Deliv	erables E	xcel Ad	ccess PD)F				
Name ntact Person	-	ESS Laboratory Shawn Morre		Proj. Location				1704299		Analysis		4							
dress			City , State		L	Zip		B02	523	An		*							
ESS Lab ID	ext 3083 Date	Collection Time	Grab -G Composite-C	Matrix		pie ID	Pres Code	# of Containers	Type of Container	Vol of Container		PFOS							
	4/11/17	1220		GW	1704	299-02	1	1 ,	Р			x		++		-			
	4/11/17	1020		GW		299-04	1	1	P			X X		++	-	-			
	4/11/17	1530		GW	1704	299-06	1	1	Р			^							
			-					1											
															-			<i>T</i>	
									-						-	-			
								-		-	10			++					
	-		-					-	-			151.11							
ontainer Type P-	Poly G-Glass AG-	Amber Glass S-Sterile	V-VOA	-	Matrix S-Soil	SD-Solid D-Sludge W	W Wastewa	iter GW-Ground	water SW-Sur	rface Water DW	-Drinking Wat	er D-Oil W	Wipes F-	Filter			2		
Cooler Pres	sent	Yes	No	Internal Use	Only	Preservation Code	_	-HCI, 3-H2SO4	4. 4-HNO3, 5	-NaOH, 6-Me(OH, 7-Asorbi	ic Acid, 8-2	InAct, 9			-			
		No NA	à	[] Pickup		Sampled by Comments:	8				-						× 1		
Cooler Terr	Signature:	mel / . a	Received by (S	[] Technici ignature Date & Turne) DEX		Contraction of the second	Relinquist	ned by (Signatur	e, Date & Time	n)	Received by	(Signature	Date & Tir	ne)					
A Religuistor (Signature, Date & Tr	1. 1200	Received by (S	0 ZX lignature, Date & Time)		4.5	Relinquis	hed by (Signatu	e. Date & Tim	e)	Received by	(Signature	Date & Th	me)					
//			KLAPNE	ELPPH 14	run d	he laboratory all c	1	01		-	-				-				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Jesse Bean Horsley & Witten 90 Route 6A Sandwich, MA 02563

RE: Barn. On-Call #4 (17027) ESS Laboratory Work Order Number: 1709723

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director

Analytical Summary

REVIEWED By ESS Laboratory at 3:26 pm, Oct 23, 2017

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

Subcontracted Analyses Maxxam Analytics - Cheektowaga, NY

PFOS

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4

ESS Laboratory Work Order: 1709723

SAMPLE RECEIPT

The following samples were received on September 26, 2017 for the analyses specified on the enclosed Chain of Custody Record.

Lab Number	Sample Name	Matrix	Analysis
1709723-01	DL-2 2'	Soil	§
1709723-02	DL-2 4'	Soil	§
1709723-03	DL-3 2'	Soil	§
1709723-04	DL-3 4'	Soil	§
1709723-05	DL-11 0-1'	Soil	§
1709723-06	DL-4 2'	Soil	§
1709723-07	DL-4 4'	Soil	§
1709723-08	DL-12 0-1'	Soil	§
1709723-09	DL-5 2'	Soil	§
1709723-10	DL-5 4'	Soil	§
1709723-11	DL-8 4'	Soil	§
1709723-12	DL-13 0-1'	Soil	§
1709723-13	DL-14 0-1'	Soil	§
1709723-14	ARFF-1 2'	Soil	§
1709723-15	ARFF-1 4'	Soil	§
1709723-16	ARFF-CB 0-1'	Soil	§
1709723-17	ARFF-3 0-1'	Soil	§
1709723-18	ARFF-4 0-1'	Soil	§

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4

ESS Laboratory Work Order: 1709723

PROJECT NARRATIVE

No unusual observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4

Analytical Methods

ESS Laboratory Work Order: 1709723

CURRENT SW-846 METHODOLOGY VERSIONS

Prep Methods

1010A - Flashpoint 6010C - ICP 6020A - ICP MS 7010 - Graphite Furnace 7196A - Hexavalent Chromium 7470A - Aqueous Mercury 7471B - Solid Mercury 8011 - EDB/DBCP/TCP 8015C - GRO/DRO 8081B - Pesticides 8082A - PCB 8100M - TPH 8151A - Herbicides 8260B - VOA 8270D - SVOA 8270D SIM - SVOA Low Level 9014 - Cyanide 9038 - Sulfate 9040C - Aqueous pH 9045D - Solid pH (Corrosivity) 9050A - Specific Conductance 9056A - Anions (IC) 9060A - TOC 9095B - Paint Filter MADEP 04-1.1 - EPH / VPH

3005A - Aqueous ICP Digestion
3020A - Aqueous Graphite Furnace / ICP MS Digestion
3050B - Solid ICP / Graphite Furnace / ICP MS Digestion
3060A - Solid Hexavalent Chromium Digestion
3510C - Separatory Funnel Extraction
3520C - Liquid / Liquid Extraction
3540C - Manual Soxhlet Extraction
3541 - Automated Soxhlet Extraction
3546 - Microwave Extraction
3580A - Waste Dilution
5030B - Aqueous Purge and Trap
5030C - Aqueous Purge and Trap
5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4

Client Sample ID: DL-2 2'

Date Sampled: 09/26/17 08:10

ESS Laboratory Work Order: 1709723

Subcontracted Analysis

ESS Laboratory Sample ID: 1709723-01 Sample Matrix: Soil

<u>Analyte</u> PFOS	<u>Results</u> See Attached	<u>Units</u>	<u>MRL</u>	<u>Method</u>	<u>DF</u>	<u>Analyst</u>	<u>Analyzed</u>	<u>I/V</u>	<u>F/V</u>
Client Sample ID: DL-2 4' Date Sampled: 09/26/17 08:15				ESS Laboratory Sample Matrix:	-	e ID: 170972	23-02		
<u>Analyte</u> PFOS	<u>Results</u> See Attached	<u>Units</u>	<u>MRL</u>	<u>Method</u>	<u>DF</u>	<u>Analyst</u>	<u>Analyzed</u>	<u>I/V</u>	<u>F/V</u>
Client Sample ID: DL-3 2' Date Sampled: 09/26/17 08:50				ESS Laboratory Sample Matrix:		e ID: 170972	23-03		
<u>Analyte</u> PFOS	<u>Results</u> See Attached	<u>Units</u>	<u>MRL</u>	<u>Method</u>	<u>DF</u>	<u>Analyst</u>	<u>Analyzed</u>	<u>I/V</u>	<u>F/V</u>
Client Sample ID: DL-3 4' Date Sampled: 09/26/17 09:00				ESS Laboratory Sample Matrix:	-	e ID: 170972	23-04		
<u>Analvte</u> PFOS	<u>Results</u> See Attached	<u>Units</u>	<u>MRL</u>	<u>Method</u>	<u>DF</u>	<u>Analyst</u>	<u>Analyzed</u>	<u>I/V</u>	<u>F/V</u>
Client Sample ID: DL-11 0-1' Date Sampled: 09/26/17 09:15				ESS Laboratory Sample Matrix:		e ID: 170972	23-05		
<u>Analyte</u> PFOS	<u>Results</u> See Attached	<u>Units</u>	<u>MRL</u>	<u>Method</u>	<u>DF</u>	<u>Analyst</u>	<u>Analyzed</u>	<u>I/V</u>	<u>F/V</u>

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4

Client Sample ID: DL-4 2'

Date Sampled: 09/26/17 09:25

ESS Laboratory Work Order: 1709723

Subcontracted Analysis

ESS Laboratory Sample ID: 1709723-06 Sample Matrix: Soil

<u>Analvte</u> PFOS	<u>Results</u> See Attached	<u>Units</u>	<u>MRL</u>	<u>Method</u>	<u>DF</u>	<u>Analyst</u>	<u>Analyzed</u>	<u>I/V</u>	<u>F/V</u>
Client Sample ID: DL-4 4' Date Sampled: 09/26/17 09:35				ESS Laboratory Sample Matrix:		e ID: 170972	23-07		
<u>Analyte</u> PFOS	<u>Results</u> See Attached	<u>Units</u>	<u>MRL</u>	<u>Method</u>	<u>DF</u>	<u>Analyst</u>	<u>Analyzed</u>	<u>I/V</u>	<u>F/V</u>
Client Sample ID: DL-12 0-1' Date Sampled: 09/26/17 09:45				ESS Laboratory Sample Matrix:	-	e ID: 170972	23-08		
<u>Analyte</u> PFOS	<u>Results</u> See Attached	<u>Units</u>	<u>MRL</u>	<u>Method</u>	<u>DF</u>	<u>Analyst</u>	<u>Analyzed</u>	<u>I/V</u>	<u>F/V</u>
Client Sample ID: DL-5 2' Date Sampled: 09/26/17 09:55				ESS Laboratory Sample Matrix:		e ID: 170972	23-09		
<u>Analyte</u> PFOS	<u>Results</u> See Attached	<u>Units</u>	<u>MRL</u>	<u>Method</u>	<u>DF</u>	<u>Analyst</u>	<u>Analyzed</u>	<u>I/V</u>	<u>F/V</u>
Client Sample ID: DL-5 4' Date Sampled: 09/26/17 10:05				ESS Laboratory Sample Matrix:		e ID: 170972	23-10		
<u>Analvte</u> PFOS	<u>Results</u> See Attached	<u>Units</u>	<u>MRL</u>	<u>Method</u>	<u>DF</u>	<u>Analyst</u>	<u>Analyzed</u>	<u>I/V</u>	<u>F/V</u>

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4

Client Sample ID: DL-8 4'

Date Sampled: 09/26/17 10:35

ESS Laboratory Work Order: 1709723

Subcontracted Analysis

ESS Laboratory Sample ID: 1709723-11 Sample Matrix: Soil

<u>Analyte</u> PFOS	<u>Results</u> See Attached	<u>Units</u>	<u>MRL</u>	<u>Method</u>	<u>DF</u>	<u>Analyst</u>	<u>Analyzed</u>	<u>I/V</u>	<u>F/V</u>
Client Sample ID: DL-13 0-1' Date Sampled: 09/26/17 11:00				ESS Laboratory Sample Matrix:		e ID: 170972	3-12		
<u>Analyte</u> PFOS	<u>Results</u> See Attached	<u>Units</u>	<u>MRL</u>	<u>Method</u>	<u>DF</u>	<u>Analyst</u>	<u>Analyzed</u>	<u>I/V</u>	<u>F/V</u>
Client Sample ID: DL-14 0-1' Date Sampled: 09/26/17 11:10				ESS Laboratory Sample Matrix:		e ID: 170972	3-13		
<u>Analyte</u> PFOS	<u>Results</u> See Attached	<u>Units</u>	<u>MRL</u>	<u>Method</u>	<u>DF</u>	<u>Analyst</u>	<u>Analyzed</u>	<u>I/V</u>	<u>F/V</u>
Client Sample ID: ARFF-1 2' Date Sampled: 09/26/17 11:40				ESS Laboratory Sample Matrix:		e ID: 170972	3-14		
<u>Analyte</u> PFOS	<u>Results</u> See Attached	<u>Units</u>	<u>MRL</u>	<u>Method</u>	<u>DF</u>	<u>Analyst</u>	<u>Analyzed</u>	<u>I/V</u>	<u>F/V</u>
Client Sample ID: ARFF-1 4' Date Sampled: 09/26/17 11:50				ESS Laboratory Sample Matrix:		e ID: 170972	3-15		
<u>Analyte</u> PFOS	<u>Results</u> See Attached	<u>Units</u>	<u>MRL</u>	<u>Method</u>	<u>DF</u>	<u>Analyst</u>	<u>Analyzed</u>	<u>I/V</u>	<u>F/V</u>

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4

ESS Laboratory Work Order: 1709723

Subcontracted Analysis

Client Sample ID: ARFF-CB 0-1' Date Sampled: 09/26/17 11:55 ESS Laboratory Sample ID: 1709723-16 Sample Matrix: Soil

<u>Analvte</u> PFOS	<u>Results</u> See Attached	<u>Units</u>	<u>MRL</u>	<u>Method</u>	<u>DF</u>	<u>Analyst</u>	<u>Analyzed</u>	<u>I/V</u> <u>F/V</u>	-
Client Sample ID: ARFF-3 0-1' Date Sampled: 09/26/17 12:05				ESS Laborator Sample Matrix	•	e ID: 170972	23-17		-
<u>Analyte</u> PFOS	<u>Results</u> See Attached	<u>Units</u>	<u>MRL</u>	<u>Method</u>	<u>DF</u>	<u>Analyst</u>	<u>Analyzed</u>	<u>I/V</u> <u>F/V</u>	•
Client Sample ID: ARFF-4 0-1' Date Sampled: 09/26/17 12:10				ESS Laborator Sample Matrix	• •	e ID: 170972	23-18		-
<u>Analyte</u> PFOS	<u>Results</u> See Attached	<u>Units</u>	<u>MRL</u>	Method	<u>DF</u>	<u>Analyst</u>	<u>Analyzed</u>	<u>I/V</u> <u>F/V</u>	r -

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4

ESS Laboratory Work Order: 1709723

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4

ESS Laboratory Work Order: 1709723

Notes and Definitions

- Z-08 See Attached
- ND Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- MDL Method Detection Limit
- MRL Method Reporting Limit
- LOD Limit of Detection
- LOQ Limit of Quantitation
- DL Detection Limit
- I/V Initial Volume
- F/V Final Volume
- § Subcontracted analysis; see attached report
- 1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.
- 2 Range result excludes concentrations of target analytes eluting in that range.
- 3 Range result excludes the concentration of the C9-C10 aromatic range.
- Avg Results reported as a mathematical average.
- NR No Recovery
- [CALC] Calculated Analyte
- SUB Subcontracted analysis; see attached report
- RL Reporting Limit
- EDL Estimated Detection Limit

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4

ESS Laboratory Work Order: 1709723

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories/pdf/OutofStateCommercialLaboratories.pdf

> Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

> > Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

Your P.O. #: B02623 Your Project #: 1709723 Your C.O.C. #: na

Attention:Shawn Morrell

ESS Laboratory 185 Frances Ave Cranston, RI USA 02910

> Report Date: 2017/10/18 Report #: R4790410 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B7L3940 Received: 2017/09/28, 16:04

Sample Matrix: Soil # Samples Received: 18

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Moisture	18	N/A	2017/09/30	CAM SOP-00445	Carter 2nd ed 51.2 m
PFOS and PFOA in soil by SPE/LCMS (1)	3	2017/10/10	2017/10/17	CAM SOP-00894	EPA537 m
PFOS and PFOA in soil by SPE/LCMS (1)	15	2017/10/10	2017/10/18	CAM SOP-00894	EPA537 m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Per- and polyfluoroalkyl substances (PFAS) identified as surrogates on the certificate of analysis represent the extracted internal standard.

U = Undetected at the limit of quantitation.

- J = Estimated concentration between the EDL & RDL.
- B = Blank Contamination.
- Q = One or more quality control criteria failed.
- E = Analyte concentration exceeds the maximum concentration level.
- K = Estimated maximum possible concentration due to ion abundance ratio failure.

Your P.O. #: B02623 Your Project #: 1709723 Your C.O.C. #: na

Attention:Shawn Morrell

ESS Laboratory 185 Frances Ave Cranston, RI USA 02910

> Report Date: 2017/10/18 Report #: R4790410 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B7L3940 Received: 2017/09/28, 16:04

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Stephanie Pollen, Project Manager Email: SPollen@maxxam.ca Phone# (905) 817-5700

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

ESS Laboratory Client Project #: 1709723 Your P.O. #: B02623

Maxxam ID		FFL325	FFL326	FFL327	FFL328	FFL329	FFL330			
Sampling Date		2017/09/26 08:10	2017/09/26 08:15	2017/09/26 08:50	2017/09/26 09:00	2017/09/26 09:15	2017/09/26 09:25			
COC Number		na	na	na	na	na	na			
	UNITS	1709723-01	1709723-02	1709723-03	1709723-04	1709723-05	1709723-06	RDL	MDL	QC Batch
Inorganics										
Moisture	%	4.3	2.2	4.4	2.8	9.3	2.8	1.0	0.50	5191056
Miscellaneous Parameters										
6:2 Fluorotelomer sulfonate	ug/kg	0.23 U	0.57 J	1.5	1.0	7.8	0.23 U	1.0	0.23	5203646
8:2 Fluorotelomer sulfonate	ug/kg	0.32 U	0.32 U	1.0	1.1	14	0.32 U	1.0	0.32	5203646
Perfluorobutane Sulfonate (PFBS)	ug/kg	0.17 U	1.0	0.17	5203646					
Perfluorobutanoic acid	ug/kg	0.23 U	0.23 U	0.23 U	0.23 U	1.4	0.23 U	1.0	0.23	5203646
Perfluorodecane Sulfonate	ug/kg	0.23 U	0.23 U	0.23 U	0.86 J	0.23 U	0.23 U	1.0	0.23	5203646
Perfluorodecanoic Acid (PFDA)	ug/kg	0.13 U	0.13 U	0.13 U	0.13 U	1.8	0.13 U	1.0	0.13	5203646
Perfluorododecanoic Acid (PFDoA)	ug/kg	0.22 U	0.22 U	0.71 J	0.22 U	0.22 U	0.22 U	1.0	0.22	5203646
Perfluoroheptanoic Acid (PFHpA)	ug/kg	1.2	0.48 J	0.17 U	0.17 U	2.1	0.17 U	1.0	0.17	5203646
Perfluorohexane Sulfonate (PFHxS)	ug/kg	1.3	0.59 J	0.23 U	0.23 U	0.82 J	0.23 U	1.0	0.23	5203646
Perfluorohexanoic Acid (PFHxA)	ug/kg	0.74 J	0.19 U	0.19 U	0.19 U	2.7	0.19 U	1.0	0.19	5203646
Perfluoro-n-Octanoic Acid (PFOA)	ug/kg	4.1	0.74 J	0.26 U	0.26 U	4.7	0.26 U	1.0	0.26	5203646
Perfluorononanoic Acid (PFNA)	ug/kg	2.5	0.17 U	0.17 U	0.17 U	16	0.17 U	1.0	0.17	5203646
Perfluorooctane Sulfonamide (PFOSA)	ug/kg	0.26 U	0.26 U	0.26 U	0.84 J	0.26 U	0.26 U	1.0	0.26	5203646
Perfluorooctane Sulfonate (PFOS)	ug/kg	1.5	0.21 U	0.21 U	0.21 U	29	0.21 U	1.0	0.21	5203646
Perfluoropentanoic Acid (PFPeA)	ug/kg	0.83 J	0.18 U	0.18 U	0.18 U	3.5	0.18 U	1.0	0.18	5203646
Perfluorotetradecanoic Acid	ug/kg	0.11 U	1.0	0.11	5203646					
Perfluorotridecanoic Acid	ug/kg	0.12 U	0.12 U	5.6	0.21 J	0.20 J	0.12 U	1.0	0.12	5203646
Perfluoroundecanoic Acid (PFUnA)	ug/kg	0.18 U	0.18 U	0.75 J	9.8	1.2	0.88 J	1.0	0.18	5203646
Surrogate Recovery (%)	0, 0									
13C2-6:2 Fluorotelomer sulfonate	%	105	116	113	105	103	98	N/A	N/A	5203646
13C2-8:2 Fluorotelomer sulfonate	%	98	114	99	101	94	100	N/A	N/A	5203646
13C2-Perfluorodecanoic acid	%	109	111	107	101	106	98	N/A	N/A	5203646
13C2-Perfluorododecanoic acid	%	90	98	97	99	99	91	N/A	N/A	5203646
13C2-Perfluorohexanoic acid	%	98	112	100	97	105	100	N/A	N/A	5203646
13C2-perfluorotetradecanoic acid	%	80	105	109	103	85	100	N/A	N/A	5203646
13C2-Perfluoroundecanoic acid	%	101	109	101	96	108	102	N/A	N/A	5203646
13C4-Perfluorobutanoic acid	%	104	107	104	101	104	101	N/A	N/A	5203646
13C4-Perfluoroheptanoic acid	%	102	116	113	109	103	101	, N/A	N/A	5203646
13C4-Perfluorooctanesulfonate	%	98	103	102	104	106	94	, N/A	N/A	5203646
13C4-Perfluorooctanoic acid	%	102	120	113	106	106	102	, N/A	N/A	5203646
13C5-Perfluorononanoic acid	%	101	107	99	102	106	96	, N/A	N/A	5203646
13C5-Perfluoropentanoic acid	%	103	108	101	105	103	100	, N/A	, N/A	5203646
RDL = Reportable Detection Limit QC Batch = Quality Control Batch N/A = Not Applicable										

ESS Laboratory Client Project #: 1709723 Your P.O. #: B02623

Maxxam ID		FFL325	FFL326	FFL327	FFL328	FFL329	FFL330			
Sampling Date		2017/09/26 08:10	2017/09/26 08:15	2017/09/26 08:50	2017/09/26 09:00	2017/09/26 09:15	2017/09/26 09:25			
COC Number		na	na	na	na	na	na			
	UNITS	1709723-01	1709723-02	1709723-03	1709723-04	1709723-05	1709723-06	RDL	MDL	QC Batch
13C8-Perfluorooctane Sulfonamide	%	105	114	108	101	114	96	N/A	N/A	5203646
1802-Perfluorohexanesulfonate	%	108	102	101	99	95	83	N/A	N/A	5203646
RDL = Reportable Detection Limit										
QC Batch = Quality Control Batch										
N/A = Not Applicable										

ESS Laboratory Client Project #: 1709723 Your P.O. #: B02623

RESULTS OF ANALYSES OF SOIL

Maxxam ID		FFL331			FFL332			FFL333	FFL334			
Sampling Date		2017/09/26 09:35			2017/09/26 09:45			2017/09/26 09:55	2017/09/26 10:05			
COC Number		na			na			na	na			
	UNITS	1709723-07	RDL	MDL	1709723-08	RDL	MDL	1709723-09	1709723-10	RDL	MDL	QC Batch
Inorganics												
Moisture	%	2.5	1.0	0.50	17	1.0	0.50	5.1	3.3	1.0	0.50	5191056
Miscellaneous Parameters												
6:2 Fluorotelomer sulfonate	ug/kg	1.7	1.0	0.23	62	10	2.3	0.23 U	0.23 U	1.0	0.23	5203646
8:2 Fluorotelomer sulfonate	ug/kg	0.32 U	1.0	0.32	7.0	1.0	0.32	0.32 U	0.32 U	1.0	0.32	5203646
Perfluorobutane Sulfonate (PFBS)	ug/kg	0.17 U	1.0	0.17	0.17 U	1.0	0.17	0.17 U	0.17 U	1.0	0.17	5203646
Perfluorobutanoic acid	ug/kg	0.23 U	1.0	0.23	0.23 U	1.0	0.23	0.23 U	0.23 U	1.0	0.23	5203646
Perfluorodecane Sulfonate	ug/kg	0.23 U	1.0	0.23	0.23 U	1.0	0.23	0.23 U	0.23 U	1.0	0.23	5203646
Perfluorodecanoic Acid (PFDA)	ug/kg	0.13 U	1.0	0.13	0.66 J	1.0	0.13	0.13 U	0.13 U	1.0	0.13	5203646
Perfluorododecanoic Acid (PFDoA)	ug/kg	0.22 U	1.0	0.22	0.22 U	1.0	0.22	0.22 U	0.22 U	1.0	0.22	5203646
Perfluoroheptanoic Acid (PFHpA)	ug/kg	0.17 U	1.0	0.17	1.2	1.0	0.17	0.40 J	0.50 J	1.0	0.17	5203646
Perfluorohexane Sulfonate (PFHxS)	ug/kg	0.23 U	1.0	0.23	0.23 U	1.0	0.23	0.49 J	0.23 U	1.0	0.23	5203646
Perfluorohexanoic Acid (PFHxA)	ug/kg	0.19 U	1.0	0.19	1.2	1.0	0.19	0.19 U	0.19 U	1.0	0.19	5203646
Perfluoro-n-Octanoic Acid (PFOA)	ug/kg	0.26 U	1.0	0.26	4.6	1.0	0.26	1.6	0.26 U	1.0	0.26	5203646
Perfluorononanoic Acid (PFNA)	ug/kg	3.7	1.0	0.17	7.3	1.0	0.17	0.17 U	0.17 U	1.0	0.17	5203646
Perfluorooctane Sulfonamide (PFOSA)	ug/kg	0.26 U	1.0	0.26	0.26 U	1.0	0.26	0.26 U	0.26 U	1.0	0.26	5203646
Perfluorooctane Sulfonate (PFOS)	ug/kg	0.50 J	1.0	0.21	23	1.0	0.21	0.21 U	0.21 U	1.0	0.21	5203646
Perfluoropentanoic Acid (PFPeA)	ug/kg	0.18 U	1.0	0.18	1.6	1.0	0.18	0.18 U	0.18 U	1.0	0.18	5203646
Perfluorotetradecanoic Acid	ug/kg	0.11 U	1.0	0.11	0.11 U	1.0	0.11	0.11 U	0.11 U	1.0	0.11	5203646
Perfluorotridecanoic Acid	ug/kg	0.12 U	1.0	0.12	0.12 U	1.0	0.12	0.12 U	0.12 U	1.0	0.12	5203646
Perfluoroundecanoic Acid (PFUnA)	ug/kg	0.18 U	1.0	0.18	0.18 U	1.0	0.18	0.18 U	0.18 U	1.0	0.18	
Surrogate Recovery (%)	0, 0											<u>.</u>
13C2-6:2 Fluorotelomer sulfonate	%	112	N/A	N/A	102	N/A	N/A	111	113	N/A	N/A	5203646
13C2-8:2 Fluorotelomer sulfonate	%	107	, N/A	, N/A	85	, N/A	N/A	95	101	, N/A	, N/A	5203646
13C2-Perfluorodecanoic acid	%	124	N/A	N/A	104	N/A	N/A	112	105	N/A	N/A	5203646
13C2-Perfluorododecanoic acid	%	108	, N/A	, N/A	96	, N/A	N/A	98	96	, N/A	, N/A	5203646
13C2-Perfluorohexanoic acid	%	109	N/A	N/A	95	N/A	N/A	101	111	N/A	N/A	5203646
13C2-perfluorotetradecanoic acid	%	112		N/A	100		N/A	103	94		N/A	5203646
13C2-Perfluoroundecanoic acid	%	116	N/A	N/A	96	N/A	N/A	103	103	N/A		5203646
13C4-Perfluorobutanoic acid	%	108	, N/A	, N/A	94	, N/A		109	108	, N/A		5203646
13C4-Perfluoroheptanoic acid	%	111	N/A	N/A	97	N/A		111	118	N/A		5203646
13C4-Perfluorooctanesulfonate	%	104	N/A	N/A	91	N/A	N/A	111	96	N/A	N/A	5203646
13C4-Perfluorooctanoic acid	%	114	N/A	N/A	98	N/A		110	115	N/A		5203646
13C5-Perfluorononanoic acid	%	106	N/A	N/A	99	N/A		106	108	N/A		5203646
13C5-Perfluoropentanoic acid	%	110	N/A	N/A	93	N/A	-	102	109	N/A		5203646
RDL = Reportable Detection Limit	!	ļ		<u> </u>	<u> </u>	-	μ <u>΄</u>	<u> </u>		-	<u> </u>	
QC Batch = Quality Control Batch												
N/A = Not Applicable												

N/A = Not Applicable

ESS Laboratory Client Project #: 1709723 Your P.O. #: B02623

RESULTS OF ANALYSES OF SOIL

Maxxam ID		FFL331			FFL332			FFL333	FFL334			
Sampling Date		2017/09/26 09:35			2017/09/26 09:45			2017/09/26 09:55	2017/09/26 10:05			
COC Number		na			na			na	na			
	UNITS	1709723-07	RDL	MDL	1709723-08	RDL	MDL	1709723-09	1709723-10	RDL	MDL	QC Batch
13C8-Perfluorooctane Sulfonamide	%	124	N/A	N/A	102	N/A	N/A	108	114	N/A	N/A	5203646
1802-Perfluorohexanesulfonate	%	106	N/A	N/A	92	N/A	N/A	114	108	N/A	N/A	5203646
RDL = Reportable Detection Limit												
QC Batch = Quality Control Batch												
N/A = Not Applicable												

ESS Laboratory Client Project #: 1709723 Your P.O. #: B02623

RESULTS OF ANALYSES OF SOIL

Maxxam ID		FFL335			FFL336			FFL337			
Sampling Date		2017/09/26 10:35			2017/09/26 11:00			2017/09/26 11:10			
COC Number		na			na			na			
	UNITS	1709723-11	RDL	MDL	1709723-12	RDL	MDL	1709723-13	RDL	MDL	QC Batch
Inorganics											
Moisture	%	2.4	1.0	0.50	8.1	1.0	0.50	14	1.0	0.50	5191056
Miscellaneous Parameters	•	1			1						
6:2 Fluorotelomer sulfonate	ug/kg	900 (1)	100	23	320 (2)	10	2.3	230 (2)	10	2.3	5203646
8:2 Fluorotelomer sulfonate	ug/kg	7.9 J (2)	10	3.2	160 (2)	10	3.2	220 (2)	10	3.2	5203646
Perfluorobutane Sulfonate (PFBS)	ug/kg	1.7 U (2)	10	1.7	0.17 U	1.0	0.17	0.17 U	1.0	0.17	5203646
Perfluorobutanoic acid	ug/kg	2.3 U (2)	10	2.3	1.5	1.0	0.23	4.6	1.0	0.23	5203646
Perfluorodecane Sulfonate	ug/kg	2.3 U (2)	10	2.3	0.23 U	1.0	0.23	0.43 J	1.0	0.23	5203646
Perfluorodecanoic Acid (PFDA)	ug/kg	1.3 U (2)	10	1.3	7.4	1.0	0.13	9.6	1.0	0.13	5203646
Perfluorododecanoic Acid (PFDoA)	ug/kg	2.2 U (2)	10	2.2	0.77 J	1.0	0.22	2.1	1.0	0.22	5203646
Perfluoroheptanoic Acid (PFHpA)	ug/kg	4.7 J (2)	10	1.7	1.6	1.0	0.17	4.9	1.0	0.17	5203646
Perfluorohexane Sulfonate (PFHxS)	ug/kg	2.3 U (2)	10	2.3	0.23 U	1.0	0.23	0.71 J	1.0	0.23	5203646
Perfluorohexanoic Acid (PFHxA)	ug/kg	9.7 J (2)	10	1.9	9.4	1.0	0.19	20	1.0	0.19	5203646
Perfluoro-n-Octanoic Acid (PFOA)	ug/kg	22 (2)	10	2.6	2.4	1.0	0.26	23	1.0	0.26	5203646
Perfluorononanoic Acid (PFNA)	ug/kg	1.7 U (2)	10	1.7	1.5	1.0	0.17	10	1.0	0.17	5203646
Perfluorooctane Sulfonamide (PFOSA)	ug/kg	2.6 U (2)	10	2.6	0.26 U	1.0	0.26	0.26 U	1.0	0.26	5203646
Perfluorooctane Sulfonate (PFOS)	ug/kg	2.1 U (2)	10	2.1	0.66 J	1.0	0.21	7.6	1.0	0.21	5203646
Perfluoropentanoic Acid (PFPeA)	ug/kg	5.3 J (2)	10	1.8	9.4	1.0	0.18	39	1.0	0.18	5203646
Perfluorotetradecanoic Acid	ug/kg	1.1 U (2)	10	1.1	0.11 U	1.0	0.11	1.1 U (3)	10	1.1	5203646
Perfluorotridecanoic Acid	ug/kg	1.2 U (2)	10	1.2	0.23 J	1.0	0.12	9.3 J (3)	10	1.2	5203646
Perfluoroundecanoic Acid (PFUnA)	ug/kg	1.8 U (2)	10	1.8	6.4	1.0	0.18	17	1.0	0.18	5203646
Surrogate Recovery (%)	•										
13C2-6:2 Fluorotelomer sulfonate	%	97	N/A	N/A	94	N/A	N/A	93	N/A	N/A	5203646
13C2-8:2 Fluorotelomer sulfonate	%	94	N/A	N/A	86	N/A	N/A	99	N/A	N/A	5203646
13C2-Perfluorodecanoic acid	%	107	N/A	N/A	96	N/A	N/A	111	N/A	N/A	5203646
13C2-Perfluorododecanoic acid	%	101	N/A	N/A	73	N/A	N/A	87	N/A	N/A	5203646
13C2-Perfluorohexanoic acid	%	99	N/A	N/A	102	N/A	N/A	107	N/A	N/A	5203646
13C2-perfluorotetradecanoic acid	%	102	N/A	N/A	63	N/A	N/A	100	N/A	N/A	5203646
13C2-Perfluoroundecanoic acid	%	105	N/A	N/A	86	N/A	N/A	100	N/A	N/A	5203646
RDL = Reportable Detection Limit	1	I	ı ·		I				,		

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Due to high concentration of the target analyte, sample required 100x dilution. Detection limit was adjusted accordingly.

(2) Due to high concentration of the target analyte, sample required 10x dilution. Detection limit was adjusted accordingly.

(3) Due to potential matrix interference, the extracted internal standard analyte exhibited low recovery and as such, may not have allowed for accurate recovery correction of the associated native compound. Sample was diluted 10x. Detection limit was adjusted accordingly.

ESS Laboratory Client Project #: 1709723 Your P.O. #: B02623

Maxxam ID		FFL335			FFL336			FFL337			
Sampling Date		2017/09/26 10:35			2017/09/26 11:00			2017/09/26 11:10			
COC Number		na			na			na			
	UNITS	1709723-11	RDL	MDL	1709723-12	RDL	MDL	1709723-13	RDL	MDL	QC Batch
13C4-Perfluorobutanoic acid	%	99	N/A	N/A	97	N/A	N/A	105	N/A	N/A	5203646
13C4-Perfluoroheptanoic acid	%	97	N/A	N/A	105	N/A	N/A	105	N/A	N/A	5203646
13C4-Perfluorooctanesulfonate	%	95	N/A	N/A	100	N/A	N/A	93	N/A	N/A	5203646
13C4-Perfluorooctanoic acid	%	103	N/A	N/A	96	N/A	N/A	102	N/A	N/A	5203646
13C5-Perfluorononanoic acid	%	97	N/A	N/A	95	N/A	N/A	103	N/A	N/A	5203646
13C5-Perfluoropentanoic acid	%	97	N/A	N/A	95	N/A	N/A	99	N/A	N/A	5203646
13C8-Perfluorooctane Sulfonamide	%	110	N/A	N/A	98	N/A	N/A	107	N/A	N/A	5203646
1802-Perfluorohexanesulfonate	%	103	N/A	N/A	88	N/A	N/A	104	N/A	N/A	5203646
RDL = Reportable Detection Limit	•										
QC Batch = Quality Control Batch											
N/A = Not Applicable											

ESS Laboratory Client Project #: 1709723 Your P.O. #: B02623

RESULTS OF ANALYSES OF SOIL

Maxxam ID		FFL338	FFL339			FFL340			FFL341			
Sampling Date		2017/09/26 11:40	2017/09/26 11:50			2017/09/26 11:55			2017/09/26 12:05			
COC Number		na	na			na			na			
	UNITS	1709723-14	1709723-15	RDL	MDL	1709723-16	RDL	MDL	1709723-17	RDL	MDL	QC Batch
Inorganics												
Moisture	%	7.4	7.4	1.0	0.50	36	1.0	0.50	7.0	1.0	0.50	5191056
Miscellaneous Parameters					1			1				
6:2 Fluorotelomer sulfonate	ug/kg	0.74 J	1.0	1.0	0.23	2.2	1.0	0.23	0.61 J	1.0	0.23	5203646
8:2 Fluorotelomer sulfonate	ug/kg	0.87 J	0.83 J	1.0	0.32	1.7	1.0	0.32	0.50 J	1.0	0.32	5203646
Perfluorobutane Sulfonate (PFBS)	ug/kg	0.17 U	0.17 U	1.0	0.17	0.17 U	1.0	0.17	0.17 U	1.0	0.17	5203646
Perfluorobutanoic acid	ug/kg	1.1	0.23 U	1.0	0.23	0.23 U	1.0	0.23	0.90 J	1.0	0.23	5203646
Perfluorodecane Sulfonate	ug/kg	0.23 U	0.23 U	1.0	0.23	0.23 U	1.0	0.23	0.38 J	1.0	0.23	5203646
Perfluorodecanoic Acid (PFDA)	ug/kg	1.2	0.62 J	1.0	0.13	0.13 U	1.0	0.13	1.6	1.0	0.13	5203646
Perfluorododecanoic Acid (PFDoA)	ug/kg	0.64 J	1.3	1.0	0.22	1.2	1.0	0.22	0.22 U	1.0	0.22	5203646
Perfluoroheptanoic Acid (PFHpA)	ug/kg	1.8	0.66 J	1.0	0.17	0.60 J	1.0	0.17	0.60 J	1.0	0.17	5203646
Perfluorohexane Sulfonate (PFHxS)	ug/kg	0.23 U	0.23 U	1.0	0.23	0.23 U	1.0	0.23	0.64 J	1.0	0.23	5203646
Perfluorohexanoic Acid (PFHxA)	ug/kg	2.2	0.73 J	1.0	0.19	0.53 J	1.0	0.19	0.80 J	1.0	0.19	5203646
Perfluoro-n-Octanoic Acid (PFOA)	ug/kg	2.6	0.75 J	1.0	0.26	0.90 J	1.0	0.26	0.78 J	1.0	0.26	5203646
Perfluorononanoic Acid (PFNA)	ug/kg	5.7	1.4	1.0	0.17	0.17 U	1.0	0.17	0.91 J	1.0	0.17	5203646
Perfluorooctane Sulfonamide (PFOSA)	ug/kg	0.26 U	0.26 U	1.0	0.26	0.26 U	1.0	0.26	0.26 U	1.0	0.26	5203646
Perfluorooctane Sulfonate (PFOS)	ug/kg	2.7	1.1	1.0	0.21	1.1	1.0	0.21	4.4	1.0	0.21	5203646
Perfluoropentanoic Acid (PFPeA)	ug/kg	3.4	0.97 J	1.0	0.18	0.18 U	1.0	0.18	1.3	1.0	0.18	5203646
Perfluorotetradecanoic Acid	ug/kg	0.11 U	0.49 J	1.0	0.11	2.6	1.0	0.11	0.11 U	1.0	0.11	5203646
Perfluorotridecanoic Acid	ug/kg	6.8	22	1.0	0.12	80 (1)	10	1.2	2.2	1.0	0.12	5203646
Perfluoroundecanoic Acid (PFUnA)	ug/kg	12	15	1.0	0.18	4.6	1.0	0.18	8.1	1.0	0.18	5203646
Surrogate Recovery (%)			•	•		•			•			
13C2-6:2 Fluorotelomer sulfonate	%	95	97	N/A	N/A	76	N/A	N/A	108	N/A	N/A	5203646
13C2-8:2 Fluorotelomer sulfonate	%	76	94	N/A	N/A	75	N/A	N/A	92	N/A	N/A	5203646
13C2-Perfluorodecanoic acid	%	102	101	N/A	N/A	84	N/A	N/A	108	N/A	N/A	5203646
13C2-Perfluorododecanoic acid	%	93	90	N/A	N/A	76	N/A	N/A	105	N/A	N/A	5203646
13C2-Perfluorohexanoic acid	%	87	97	N/A	N/A	84	N/A	N/A	111	N/A	N/A	5203646
13C2-perfluorotetradecanoic acid	%	91	88	N/A	N/A	99	N/A	N/A	102	N/A	N/A	5203646
13C2-Perfluoroundecanoic acid	%	98	91	N/A	N/A	82	N/A	N/A	102	N/A	N/A	5203646
13C4-Perfluorobutanoic acid	%	92	101	N/A	N/A	85	N/A	N/A	107	N/A	N/A	5203646
13C4-Perfluoroheptanoic acid	%	90	102	N/A	N/A	85	N/A	N/A	110	N/A	N/A	5203646
13C4-Perfluorooctanesulfonate	%	83	96	N/A	N/A	79	N/A	N/A	114	N/A	N/A	5203646
13C4-Perfluorooctanoic acid	%	95	98	N/A	N/A	90	N/A		111	N/A	N/A	5203646
13C5-Perfluorononanoic acid	%	96	93	N/A	N/A	86	N/A	N/A	96	N/A	N/A	5203646
RDL = Reportable Detection Limit			1	<u> </u>		1	r		ı		r	

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Due to high concentration of the target analyte, sample required 10x dilution. Detection limit was adjusted accordingly.

ESS Laboratory Client Project #: 1709723 Your P.O. #: B02623

Maxxam ID		FFL338	FFL339			FFL340			FFL341			
Sampling Date		2017/09/26 11:40	2017/09/26 11:50			2017/09/26 11:55			2017/09/26 12:05			
COC Number		na	na			na			na			
	UNITS	1709723-14	1709723-15	RDL	MDL	1709723-16	RDL	MDL	1709723-17	RDL	MDL	QC Batch
13C5-Perfluoropentanoic acid	%	94	101	N/A	N/A	82	N/A	N/A	103	N/A	N/A	5203646
13C8-Perfluorooctane Sulfonamide	%	102	102	N/A	N/A	78	N/A	N/A	111	N/A	N/A	5203646
1802-Perfluorohexanesulfonate	%	90	87	N/A	N/A	86	N/A	N/A	102	N/A	N/A	5203646
RDL = Reportable Detection Limit												
QC Batch = Quality Control Batch												
N/A = Not Applicable												

ESS Laboratory Client Project #: 1709723 Your P.O. #: B02623

Maxxam ID		FFL342	FFL342			
Sampling Date		2017/09/26	2017/09/26			
		12:10	12:10			
COC Number		na	na			
	UNITS	1709723-18	1709723-18 Lab-Dup	RDL	MDL	QC Batch
Inorganics						
Moisture	%	13	13	1.0	0.50	5191056
Miscellaneous Parameters						
6:2 Fluorotelomer sulfonate	ug/kg	0.65 J	N/A	1.0	0.23	5203646
8:2 Fluorotelomer sulfonate	ug/kg	0.32 U	N/A	1.0	0.32	5203646
Perfluorobutane Sulfonate (PFBS)	ug/kg	0.17 U	N/A	1.0	0.17	5203646
Perfluorobutanoic acid	ug/kg	1.1	N/A	1.0	0.23	5203646
Perfluorodecane Sulfonate	ug/kg	0.23 U	N/A	1.0	0.23	5203646
Perfluorodecanoic Acid (PFDA)	ug/kg	0.85 J	N/A	1.0	0.13	5203646
Perfluorododecanoic Acid (PFDoA)	ug/kg	0.22 U	N/A	1.0	0.22	5203646
Perfluoroheptanoic Acid (PFHpA)	ug/kg	0.75 J	N/A	1.0	0.17	5203646
Perfluorohexane Sulfonate (PFHxS)	ug/kg	0.23 U	N/A	1.0	0.23	5203646
Perfluorohexanoic Acid (PFHxA)	ug/kg	0.89 J	N/A	1.0	0.19	5203646
Perfluoro-n-Octanoic Acid (PFOA)	ug/kg	0.97 J	N/A	1.0	0.26	5203646
Perfluorononanoic Acid (PFNA)	ug/kg	2.9	N/A	1.0	0.17	5203646
Perfluorooctane Sulfonamide (PFOSA)	ug/kg	0.26 U	N/A	1.0	0.26	5203646
Perfluorooctane Sulfonate (PFOS)	ug/kg	1.0	N/A	1.0	0.21	5203646
Perfluoropentanoic Acid (PFPeA)	ug/kg	1.6	N/A	1.0	0.18	5203646
Perfluorotetradecanoic Acid	ug/kg	0.11 U	N/A	1.0	0.11	5203646
Perfluorotridecanoic Acid	ug/kg	0.25 J	N/A	1.0	0.12	5203646
Perfluoroundecanoic Acid (PFUnA)	ug/kg	0.89 J	N/A	1.0	0.18	5203646
Surrogate Recovery (%)						
13C2-6:2 Fluorotelomer sulfonate	%	90	N/A	N/A	N/A	5203646
13C2-8:2 Fluorotelomer sulfonate	%	92	N/A	N/A	N/A	5203646
13C2-Perfluorodecanoic acid	%	101	N/A	N/A	N/A	5203646
13C2-Perfluorododecanoic acid	%	98	N/A	N/A	N/A	5203646
13C2-Perfluorohexanoic acid	%	100	N/A	N/A	N/A	5203646
13C2-perfluorotetradecanoic acid	%	103	N/A	N/A	N/A	5203646
13C2-Perfluoroundecanoic acid	%	101	N/A	N/A	N/A	5203646
13C4-Perfluorobutanoic acid	%	101	N/A	N/A	N/A	5203646
13C4-Perfluoroheptanoic acid	%	108	N/A	N/A	N/A	5203646
13C4-Perfluorooctanesulfonate	%	91	N/A	N/A	N/A	5203646
13C4-Perfluorooctanoic acid	%	102	N/A	N/A	N/A	5203646
13C5-Perfluorononanoic acid	%	100	N/A	N/A	N/A	5203646
RDL = Reportable Detection Limit			-			-
QC Batch = Quality Control Batch						
Lab-Dup = Laboratory Initiated Duplicat	e					
N/A = Not Applicable						

ESS Laboratory Client Project #: 1709723 Your P.O. #: B02623

Maxxam ID		FFL342	FFL342			
Sampling Date		2017/09/26 12:10	2017/09/26 12:10			
COC Number		na	na			
	UNITS	1709723-18	1709723-18 Lab-Dup	RDL	MDL	QC Batch
13C5-Perfluoropentanoic acid	%	103	N/A	N/A	N/A	5203646
13C8-Perfluorooctane Sulfonamide	%	110	N/A	N/A	N/A	5203646
1802-Perfluorohexanesulfonate	%	102	N/A	N/A	N/A	5203646
RDL = Reportable Detection Limit QC Batch = Quality Control Batch						
Lab-Dup = Laboratory Initiated Duplicate N/A = Not Applicable	e					

ESS Laboratory Client Project #: 1709723 Your P.O. #: B02623

TEST SUMMARY

Maxxam ID: FFL325 Sample ID: 1709723-01 Matrix: Soil					Collected: Shipped: Received:	2017/09/26 2017/09/28
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture	BAL	5191056	N/A	2017/09/30	Min Yang	
PFOS and PFOA in soil by SPE/LCMS	LCMS	5203646	2017/10/10	2017/10/17	Anjan Desa	ai
Maxxam ID: FFL326 Sample ID: 1709723-02 Matrix: Soil					Collected: Shipped: Received:	2017/09/26 2017/09/28
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture	BAL	5191056	N/A	2017/09/30	Min Yang	
PFOS and PFOA in soil by SPE/LCMS	LCMS	5203646	2017/10/10	2017/10/17	Anjan Desa	ai
Maxxam ID: FFL327 Sample ID: 1709723-03 Matrix: Soil					Collected: Shipped: Received:	2017/09/26 2017/09/28
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture	BAL	5191056	N/A	2017/09/30	Min Yang	
PFOS and PFOA in soil by SPE/LCMS	LCMS	5203646	2017/10/10	2017/10/17	Anjan Desa	ai
Maxxam ID: FFL328 Sample ID: 1709723-04 Matrix: Soil					Collected: Shipped: Received:	2017/09/26 2017/09/28
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture	BAL	5191056	N/A	2017/09/30	Min Yang	
PFOS and PFOA in soil by SPE/LCMS	LCMS	5203646	2017/10/10	2017/10/18	Anjan Desa	ai
Maxxam ID: FFL329 Sample ID: 1709723-05 Matrix: Soil					Collected: Shipped: Received:	2017/09/26 2017/09/28
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture	BAL	5191056	N/A	2017/09/30	Min Yang	
PFOS and PFOA in soil by SPE/LCMS	LCMS	5203646	2017/10/10	2017/10/18	Anjan Desa	ai
Maxxam ID: FFL330 Sample ID: 1709723-06 Matrix: Soil					Collected: Shipped: Received:	2017/09/26 2017/09/28
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Test Description Moisture	Instrumentation BAL	Batch 5191056	Extracted N/A	Date Analyzed 2017/09/30	Analyst Min Yang	

Page 13 of 21

ESS Laboratory Client Project #: 1709723 Your P.O. #: B02623

TEST SUMMARY

Maxxam ID: FFL331 Sample ID: 1709723-07 Matrix: Soil					Collected: Shipped: Received:	2017/09/26 2017/09/28
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture	BAL	5191056	N/A	2017/09/30	Min Yang	
PFOS and PFOA in soil by SPE/LCMS	LCMS	5203646	2017/10/10	2017/10/18	Anjan Desa	ai
Maxxam ID: FFL332 Sample ID: 1709723-08 Matrix: Soil					Collected: Shipped: Received:	2017/09/26 2017/09/28
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture	BAL	5191056	N/A	2017/09/30	Min Yang	
PFOS and PFOA in soil by SPE/LCMS	LCMS	5203646	2017/10/10	2017/10/18	Anjan Desa	ai
Maxxam ID: FFL333 Sample ID: 1709723-09 Matrix: Soil					Collected: Shipped: Received:	2017/09/26 2017/09/28
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture	BAL	5191056	N/A	2017/09/30	Min Yang	
PFOS and PFOA in soil by SPE/LCMS	LCMS	5203646	2017/10/10	2017/10/18	Anjan Desa	ai
Maxxam ID: FFL334 Sample ID: 1709723-10 Matrix: Soil					Collected: Shipped: Received:	2017/09/26 2017/09/28
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture	BAL	5191056	N/A	2017/09/30	Min Yang	
PFOS and PFOA in soil by SPE/LCMS	LCMS	5203646	2017/10/10	2017/10/18	Anjan Desa	ai
Maxxam ID: FFL335 Sample ID: 1709723-11 Matrix: Soil					Collected: Shipped: Received:	2017/09/26 2017/09/28
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture	BAL	5191056	N/A	2017/09/30	Min Yang	
PFOS and PFOA in soil by SPE/LCMS	LCMS	5203646	2017/10/10	2017/10/18	Anjan Desa	ai
Maxxam ID: FFL336 Sample ID: 1709723-12 Matrix: Soil					Collected: Shipped: Received:	2017/09/26 2017/09/28
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
	Instrumentation BAL	Batch 5191056	Extracted N/A	Date Analyzed 2017/09/30	Analyst Min Yang	

Page 14 of 21

ESS Laboratory Client Project #: 1709723 Your P.O. #: B02623

TEST SUMMARY

Maxxam ID: FFL337 Sample ID: 1709723-13 Matrix: Soil					Collected: Shipped: Received:	2017/09/26 2017/09/28
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture	BAL	5191056	N/A	2017/09/30	Min Yang	
PFOS and PFOA in soil by SPE/LCMS	LCMS	5203646	2017/10/10	2017/10/18	Anjan Desa	ai
Maxxam ID: FFL338 Sample ID: 1709723-14 Matrix: Soil					Collected: Shipped: Received:	2017/09/26 2017/09/28
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture	BAL	5191056	N/A	2017/09/30	Min Yang	
PFOS and PFOA in soil by SPE/LCMS	LCMS	5203646	2017/10/10	2017/10/18	Anjan Desa	ai
Maxxam ID: FFL339 Sample ID: 1709723-15 Matrix: Soil					Collected: Shipped: Received:	2017/09/26 2017/09/28
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture	BAL	5191056	N/A	2017/09/30	Min Yang	
PFOS and PFOA in soil by SPE/LCMS	LCMS	5203646	2017/10/10	2017/10/18	Anjan Desa	ai
Maxxam ID: FFL340 Sample ID: 1709723-16 Matrix: Soil					Collected: Shipped: Received:	2017/09/26 2017/09/28
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture	BAL	5191056	N/A	2017/09/30	Min Yang	
PFOS and PFOA in soil by SPE/LCMS	LCMS	5203646	2017/10/10	2017/10/18	Anjan Desa	ai
Maxxam ID: FFL341 Sample ID: 1709723-17 Matrix: Soil					Collected: Shipped: Received:	2017/09/26 2017/09/28
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture	BAL	5191056	N/A	2017/09/30	Min Yang	
PFOS and PFOA in soil by SPE/LCMS	LCMS	5203646	2017/10/10	2017/10/18	Anjan Desa	ai
Maxxam ID: FFL342 Sample ID: 1709723-18 Matrix: Soil					Collected: Shipped: Received:	2017/09/26 2017/09/28
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
	Instrumentation BAL	Batch 5191056	Extracted N/A	Date Analyzed 2017/09/30	Analyst Min Yang	

Page 15 of 21

ESS Laboratory Client Project #: 1709723 Your P.O. #: B02623

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	1709723-18					Shipped:	2017/09/26 2017/09/28
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	5191056	N/A	2017/09/30	Min Yang	

ESS Laboratory Client Project #: 1709723 Your P.O. #: B02623

GENERAL COMMENTS

Results relate only to the items tested.

ESS Laboratory Client Project #: 1709723 Your P.O. #: B02623

QUALITY ASSURANCE REPORT

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
5191056	CYN	RPD - Sample/Sample Dup	Moisture	2017/09/30	0.76		%	20
5203646 AD9 Matrix Spike(FFL335)		6:2 Fluorotelomer sulfonate	2017/10/17		NC	%	70 - 130	
	8:2 Fluorotelomer sulfonate	2017/10/17		NC	%	70 - 130		
	Perfluorobutane Sulfonate (PFBS)	2017/10/17		NC	%	70 - 130		
	Perfluorobutanoic acid	2017/10/17		NC	%	70 - 130		
	Perfluorodecane Sulfonate	2017/10/17		NC	%	70 - 130		
	Perfluorodecanoic Acid (PFDA)	2017/10/17		NC	%	70 - 130		
			Perfluorododecanoic Acid (PFDoA)	2017/10/17		NC	%	70 - 130
		Perfluorononanoic Acid (PFNA)	2017/10/17		NC	%	70 - 130	
			Perfluorooctane Sulfonamide (PFOSA)	2017/10/17		NC	%	70 - 130
			Perfluorotetradecanoic Acid	2017/10/17		NC	%	70 - 130
			Perfluorotridecanoic Acid	2017/10/17		NC	%	70 - 130
			Perfluoroundecanoic Acid (PFUnA)	2017/10/17		NC	%	70 - 130
			Perfluoroheptanoic Acid (PFHpA)	2017/10/17		NC	%	70 - 130
			Perfluorohexane Sulfonate (PFHxS)	2017/10/17		NC	%	70 - 130
			Perfluorohexanoic Acid (PFHxA)	2017/10/17		NC	%	70 - 130
			Perfluoro-n-Octanoic Acid (PFOA)	2017/10/17		NC	%	70 - 130
			Perfluorooctane Sulfonate (PFOS)	2017/10/17		NC	%	70 - 130
			Perfluoropentanoic Acid (PFPeA)	2017/10/17		NC	%	70 - 130
5203646	5203646 AD9 Matrix Spike	Matrix Spike DUP(FFL335)	6:2 Fluorotelomer sulfonate	2017/10/17		NC	%	70 - 130
			8:2 Fluorotelomer sulfonate	2017/10/17		NC	%	70 - 130
			Perfluorobutane Sulfonate (PFBS)	2017/10/17		NC	%	70 - 130
			Perfluorobutanoic acid	2017/10/17		NC	%	70 - 130
		Perfluorodecane Sulfonate	2017/10/17		NC	%	70 - 130	
		Perfluorodecanoic Acid (PFDA)	2017/10/17		NC	%	70 - 130	
		Perfluorododecanoic Acid (PFDoA)	2017/10/17		NC	%	70 - 130	
		Perfluorononanoic Acid (PFNA)	2017/10/17		NC	%	70 - 130	
	Perfluorooctane Sulfonamide (PFOSA)	2017/10/17		NC	%	70 - 130		
	Perfluorotetradecanoic Acid	2017/10/17		NC	%	70 - 130		
	Perfluorotridecanoic Acid	2017/10/17		NC	%	70 - 130		
			Perfluoroundecanoic Acid (PFUnA)	2017/10/17		NC	%	70 - 130
			Perfluoroheptanoic Acid (PFHpA)	2017/10/17		NC	%	70 - 130
			Perfluorohexane Sulfonate (PFHxS)	2017/10/17		NC	%	70 - 130
	Perfluorohexanoic Acid (PFHxA)	2017/10/17		NC	%	70 - 130		
	Perfluoro-n-Octanoic Acid (PFOA)	2017/10/17		NC	%	70 - 130		
			Perfluorooctane Sulfonate (PFOS)	2017/10/17		NC	%	70 - 130
			Perfluoropentanoic Acid (PFPeA)	2017/10/17		NC	%	70 - 130
5203646	AD9	MS/MSD RPD	6:2 Fluorotelomer sulfonate	2017/10/17	NC		%	30
		8:2 Fluorotelomer sulfonate	2017/10/17	NC		%	30	
		Perfluorobutane Sulfonate (PFBS)	2017/10/17	NC		%	30	
		Perfluorobutanoic acid	2017/10/17	NC		%	30	
		Perfluorodecane Sulfonate	2017/10/17	NC		%	30	
		Perfluorodecanoic Acid (PFDA)	2017/10/17	NC		%	30	
		Perfluorododecanoic Acid (PFDoA)	2017/10/17	NC		%	30	
		Perfluorononanoic Acid (PFNA)	2017/10/17	NC		%	30	
		Perfluorooctane Sulfonamide (PFOSA)	2017/10/17	NC		%	25	
		Perfluorotetradecanoic Acid	2017/10/17	NC		%	30	
		Perfluorotridecanoic Acid	2017/10/17	NC		%	30	
		Perfluoroundecanoic Acid (PFUnA)	2017/10/17	NC		%	30	
			Perfluoroheptanoic Acid (PFHpA)	2017/10/17	NC		%	30
			Perfluorohexane Sulfonate (PFHxS)	2017/10/17	NC		%	30
			Perfluorohexanoic Acid (PFHxA)	2017/10/17	NC		%	30
			Perfluoro-n-Octanoic Acid (PFOA)	2017/10/17	NC		%	30
		Perfluorooctane Sulfonate (PFOS)	2017/10/17	NC		%	30	

Maxxam Job #: B7L3940 Report Date: 2017/10/18 ESS Laboratory Client Project #: 1709723 Your P.O. #: B02623

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			Perfluoropentanoic Acid (PFPeA)	2017/10/17	NC		%	30
5203646	AD9	Spiked Blank	13C2-6:2 Fluorotelomer sulfonate	2017/10/17		96	%	50 - 150
			13C2-8:2 Fluorotelomer sulfonate	2017/10/17		101	%	50 - 150
			13C2-Perfluorodecanoic acid	2017/10/17		113	%	50 - 150
			13C2-Perfluorododecanoic acid	2017/10/17		100	%	50 - 150
			13C2-Perfluorohexanoic acid	2017/10/17		102	%	50 - 150
			13C2-perfluorotetradecanoic acid	2017/10/17		101	%	50 - 150
			13C2-Perfluoroundecanoic acid	2017/10/17		104	%	50 - 150
			13C4-Perfluorobutanoic acid	2017/10/17		100	%	50 - 150
			13C4-Perfluoroheptanoic acid	2017/10/17		107	%	50 - 150
			13C4-Perfluorooctanesulfonate	2017/10/17		104	%	50 - 150
			13C4-Perfluorooctanoic acid	2017/10/17		112	%	50 - 150
			13C5-Perfluorononanoic acid	2017/10/17		102	%	50 - 150
			13C5-Perfluoropentanoic acid	2017/10/17		107	%	50 - 150
			13C8-Perfluorooctane Sulfonamide	2017/10/17		104	%	50 - 150
			1802-Perfluorohexanesulfonate	2017/10/17		101	%	50 - 150
			6:2 Fluorotelomer sulfonate	2017/10/17		106	%	70 - 130
			8:2 Fluorotelomer sulfonate	2017/10/17		106	%	70 - 130
			Perfluorobutane Sulfonate (PFBS)	2017/10/17		104	%	70 - 130
			Perfluorobutanoic acid	2017/10/17		104	%	70 - 130
			Perfluorodecane Sulfonate	2017/10/17		88	%	70 - 130
			Perfluorodecanoic Acid (PFDA)	2017/10/17		100	%	70 - 130
			Perfluorododecanoic Acid (PFDoA)	2017/10/17		106	%	70 - 130
			Perfluorononanoic Acid (PFNA)	2017/10/17		102	%	70 - 130
			Perfluorooctane Sulfonamide (PFOSA)	2017/10/17		98	%	70 - 130
			Perfluorotetradecanoic Acid	2017/10/17		107	%	70 - 130
			Perfluorotridecanoic Acid	2017/10/17		104	%	70 - 130
			Perfluoroundecanoic Acid (PFUnA)	2017/10/17		100	%	70 - 130
			Perfluoroheptanoic Acid (PFHpA)	2017/10/17		98	%	70 - 130
			Perfluorohexane Sulfonate (PFHxS)	2017/10/17		96	%	70 - 130
			Perfluorohexanoic Acid (PFHxA)	2017/10/17		101	%	70 - 130
			Perfluoro-n-Octanoic Acid (PFOA)	2017/10/17		94	%	70 - 130
			Perfluorooctane Sulfonate (PFOS)	2017/10/17		94	%	70 - 130
			Perfluoropentanoic Acid (PFPeA)	2017/10/17		99	%	70 - 130
5203646	AD9	Method Blank	13C2-6:2 Fluorotelomer sulfonate	2017/10/17		106	%	50 - 150
			13C2-8:2 Fluorotelomer sulfonate	2017/10/17		98	%	50 - 150
			13C2-Perfluorodecanoic acid	2017/10/17		106	%	50 - 150
			13C2-Perfluorododecanoic acid	2017/10/17		88	%	50 - 150
			13C2-Perfluorohexanoic acid	2017/10/17		95	%	50 - 150
			13C2-perfluorotetradecanoic acid	2017/10/17		94	%	50 - 150
			13C2-Perfluoroundecanoic acid	2017/10/17		96	%	50 - 150
			13C4-Perfluorobutanoic acid	2017/10/17		102	%	50 - 150
			13C4-Perfluoroheptanoic acid	2017/10/17		102	%	50 - 150
			13C4-Perfluorooctanesulfonate	2017/10/17		97	%	50 - 150
			13C4-Perfluorooctanoic acid	2017/10/17		113	%	50 - 150
			13C5-Perfluorononanoic acid	2017/10/17		98	%	50 - 150
			13C5-Perfluoropentanoic acid	2017/10/17		106	%	50 - 150
			13C8-Perfluorooctane Sulfonamide	2017/10/17		92	%	50 - 150
			1802-Perfluorohexanesulfonate	2017/10/17		105	%	50 - 150
			6:2 Fluorotelomer sulfonate	2017/10/17	0.23 U, MDL=0.23		ug/kg	
			8:2 Fluorotelomer sulfonate	2017/10/17	0.32 U, MDL=0.32		ug/kg	

Maxxam Job #: B7L3940 Report Date: 2017/10/18

ESS Laboratory Client Project #: 1709723 Your P.O. #: B02623

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
Daten	mit	de Type	Perfluorobutane Sulfonate (PFBS)	2017/10/17	0.17 U, MDL=0.17	70 Necovery	ug/kg	QC LIMITS
			Perfluorobutanoic acid	2017/10/17	0.23 U, MDL=0.23		ug/kg	
			Perfluorodecane Sulfonate	2017/10/17	0.23 U, MDL=0.23		ug/kg	
			Perfluorodecanoic Acid (PFDA)	2017/10/17	0.13 U, MDL=0.13		ug/kg	
			Perfluorododecanoic Acid (PFDoA)	2017/10/17	0.22 U, MDL=0.22		ug/kg	
			Perfluorononanoic Acid (PFNA)	2017/10/17	0.17 U, MDL=0.17		ug/kg	
			Perfluorooctane Sulfonamide (PFOSA)	2017/10/17	0.26 U, MDL=0.26		ug/kg	
			Perfluorotetradecanoic Acid	2017/10/17	0.11 U, MDL=0.11		ug/kg	
			Perfluorotridecanoic Acid	2017/10/17	0.12 U, MDL=0.12		ug/kg	
			Perfluoroundecanoic Acid (PFUnA)	2017/10/17	0.18 U, MDL=0.18		ug/kg	
			Perfluoroheptanoic Acid (PFHpA)	2017/10/17	0.17 U, MDL=0.17		ug/kg	
			Perfluorohexane Sulfonate (PFHxS)	2017/10/17	0.23 U, MDL=0.23		ug/kg	
			Perfluorohexanoic Acid (PFHxA)	2017/10/17	0.19 U, MDL=0.19		ug/kg	
			Perfluoro-n-Octanoic Acid (PFOA)	2017/10/17	0.26 U, MDL=0.26		ug/kg	
			Perfluorooctane Sulfonate (PFOS)	2017/10/17	0.21 U, MDL=0.21		ug/kg	
			Perfluoropentanoic Acid (PFPeA)	2017/10/17	0.18 U, MDL=0.18		ug/kg	

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

Maxxam Job #: B7L3940 Report Date: 2017/10/18 ESS Laboratory Client Project #: 1709723 Your P.O. #: B02623

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

<u>11</u>.

Adam Robinson, Supervisor, LC/MS/MS

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

										•											•					
ESS L			•					C	HAIN O	FC	ວມ	ST	OD	Y	·	ESS	S Lai	 b#			<u>~</u>	'nΩZ				
Division of	Thie	elsch E	ngineering, Inc	•		Turr	n Tin	ne <u>7</u>	Standard	0	ther					<u> </u>							7			
185 France	es A	venue,	Cranston, RI 0	2910)-2211				RI CT NH I				Other			Reporting Limits - $\frac{3 - 1}{6} - \frac{3}{1}$										
1 el. (401) / <u>www.essla</u>	461- bora	7181 I	Fax (401) 461- m	4486	5	Is this	s proje	ect for any of	the following:(pl	ease	circle)	· · · · · · · · · · · · · · · · · · ·			Electonic Deliverables Exce) Access PDF										
Co. Name					<u> </u>	Projec	x#		ISACE CT I						_	 		ilecton					Acces		₩ 	
Contact Person	<u>80</u>	<u>19 w</u>	ITTEN GIN			Addre	70	27	BARN	<u>U 1</u>	ch	<u>n</u>	- Her	ч			n	ကြ				i				
<u>1 155</u> City	<u>~~</u>			State)		- 90	onti	245 IZin			IPO:	#				Allalysis	5					ĺ			
City SANDU	NC	Н			MA				Zip 0256'	3		· ·			•			ALCM				ľ	l	į		
^{Tel} 508	<u>53</u>	16600	<u>)</u>		508 q	3.3	315	<u>ر</u>	email: 7480 r	QI	1015	leg	with	- 1 .4				X				ľ				
ESS Lab ID		Date	Collection Time		Grab -G	Mai	trix	Sa	mple ID	l I	Pres Code		# of ntainers	Ту	be of tainer		l of ainer	P.F.S			ļ					
	91	25/17			a	5		DL-2	2'		1		1	P	•	25	Vul	()	ļ							
_ Z		 	0815				·	DL-2	41		1		1			1		1					1	+		
3			0550					ロレーシ	2'		Γ						·							+	╞╌╂	
ч			0900					DL-3	4'	1-					· ·							-+-		+	┢╌┼	-1
S			0915					PL-1	10-11		İ—		†	╞╴╏		-1						-+-		╉╼	┢╴╁	
6			0925					DL-4	2'							{	, .		_				+	+	┝━╌┞╸	
ר			0935					DL -4	4'									+			-				┝─┼	
8			0945	-			•	;;	20-1	╞┤		Ť	 -			-+		╉┤				+		<u> </u>	┝─┼	
5			0955					DL-5		┼╂		\uparrow		+		-+		╂┦	-+			+			┝─┼	
UD			1005	a				DL-5	41	7		4			· ·	╶╁		┶┤	\neg	· ·	-+		<u> </u>	╞╌┥	┝╌╄╴	
ontainer Type P-I	oiy)G	Glass AG-	Amber Glass S-Sterile	V-VOA				Matrix S-Soil	SO-Solid D-Sludge	ww-v	Vasteva	ater G	W-Groun	<u> </u>	SW-Si		later. D	W Dele								
Cooler Pres	ent		Yes	_No)	Interr	nal U	se Only	Preservation Code	-1 N	, ј), 2-н	ICI, 3-	H2SO4	.4-HN	O3, 5-I	NaOH.	6-MeC)H. 7-/	Asorbi	c Acid	-0a v	Act 9-	F-Filte			
		_ Yes	No_NA:				ckup		Sampled by	: 1	<u></u>		<u></u>					·····			, o					
Copler Tem		ture:	4.9 Kem	L		[-]-Tē	chni	1	Comments:															_		
elinquished by: (S	_		me)		o by: (Signa				- k	Relín	quishet	1 by: (S	Signature	Date A	Time\		10	Canalo	d here?	Cincol		10 Q T				
elinquisited by: (Si	anatur	912 Date & Ti	612 1550		12		7	26/17/5	<u> 20 -</u>	<u> </u>		-	Q de	he	\neg	(7)						te & Tim Z لوا		1835	_	
				, LEGENCE	d by: (Signa	iere, Dat	eoriuu	le)		Relint	quished	by: (S	Signaturé,	Date 8	Tima)		F	Receive	d by: (Signatu		te & Tim	10)	<u>-7-14-1</u>		-
			dges samples were				F	Please fax to t	he laboratory all	l char	iges t	lo Ch	ain of (Custo	dy		_الــــــــــــــــــــــــــــــــــــ	(Wh	ite) L	ab Co	ру]
collected in accord	ALICE A	MADEP	CAM VIIA																	Client	••	eipt				

۰.

. -

PAGE 1 of 2

					· · ·	•								PAC	ne i	² of
ESS La	aborato	ory			CHAIN OF	CUS	STOD	Ý	ESS Lat	,#	170	977	23		<u></u>	
Division of	Thielsch Er	ngineering, Inc.		Turn Tim	e <u> </u>	Other_	······································				•			10	1	
185 France	es Avenue, (Cranston, RI 0	2910-2211	Regulatory State MA RI CT NH NJ NY ME Other						Reporti	ing Limi	ts		<u> Gw</u>	1	0
www.essla	461-7181 F boratory.coi	Fax (401) 461-4 m	4486		ct for any of the following:(plea Navy USACE CT DI				E	Electonic Deliverables Excel Access PDE						
Co. Name HOA	SLGY W	ITTEN GAW	JP		27 Project Name BAM. 01	CAY	L.#4		ŝi	Ń						
Contact Person	<u>~~</u>		State	90	NT 6A		PO#		Analysis	E						
SANON	NCH		MA	•	Zip 02563	, .			Ana	Kr.CM.						
	8336600	>	Fax SUB 9	33 315	o email: hean	Phors	legwitte	A .Com								
ESS Lab ID	Date	Collection Time	Grab -G Composite-C	Matrix	Sample ID	Pres Code	# of Containers	Type of _	Vol of Container	Î						
Ч	9/26/17	1035.	6	5	DL-8 4'	1	1	·P ·	250ml	80						
12	1	1100			DL-13 0-1'	Ì		1	1	1						
13		1110			PL-14 0-1'											
14		1140			ARFF-12'											
15		1150			ARFF-1 4'					╎╏╵╵				-	1.	
<u>ما</u>		1155			ARFF-CB 0-1				• •			·	,			
(7)		1205			ARFF-30-1'											
K	7	1210		p.	ARFF-4 0-1'	×	4	*	×	1 de						
ontainer Type:	-PolyG-Glass AG	-Amber Glass S-Sterile	V-VOA		Matrix S-Soil SD-Solid D-Sludge V	ww-Waster	vater GW-Grour	ndwater SW-S	Surface Water	DW-Drink	king Water	O-Oil	W-Wipes	F-Filter	<u></u>	
Cooler Pre	sent	Yes	No	Internal L	Jse Only Preservation Code	: (1), 2-	HCI, 3-H2SO4	, 4-HNO3, 5	-NaOH, 6-Me	OH, 7-A	sorbic Ac	id, 8-Z	inAct, 9-			
Seals Intac	xt Yes	No NA		[] Pickup	Sampled by :	tw		<u> </u>					<u> </u>	<u></u>	<u> </u>	
Cooler Ten	pperature:	491000	([] Techni	ician Comments:	<u> </u>			<u> </u>		· · ·			<u></u>		
Relinquished by (Sigheture, Date &	1117 1530	Received by: (Sign	alture Cate & Th		Relinquish	ad by (Signature		1736	Receive	d by: (Sigr	•	Date & Tim G 26		1835	·
Relinquished by: ((Signature, Date &		Received by: (Sign	the second states of the secon		Relinquish	ed by: (Signature			Received	d by: (Sigr				10-22	
•		iedges samples were	JI	<u></u>	Please fax to the laboratory all	changes	to Chain of	Custody			ite) Lab					
collected in acco	ordance with MADE	P CAM VIIA								2 (Yell	low) Clie	ent Re	ceipt			

. .

.

.

1

. :

i.

<u>.</u>...

.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Joe Longo Horsley & Witten 90 Route 6A Sandwich, MA 02563

RE: HYA (14105) ESS Laboratory Work Order Number: 1612316

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director

Analytical Summary

REVIEWED By ESS Laboratory at 5:41 pm, Dec 29, 2016

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state tandards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

Subcontracted Analyses Maxxam Analytics - Cheektowaga, NY

PFOA, PFOS

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: HYA

ESS Laboratory Work Order: 1612316

SAMPLE RECEIPT

The following samples were received on December 12, 2016 for the analyses specified on the enclosed Chain of Custody Record.

To achieve CAM compliance for MCP data, ESS Laboratory has performed and reviewed all QA/QC Requirements and Performance Standards listed in each method. Holding times and preservation have also been reviewed. All CAM requirements have been achieved unless noted in the project narrative.

Each method has been set-up in the laboratory to reach required MCP standards. The methods for aqueous VOA and Soil Methanol VOA have known limitations for certain analytes. The regulatory standards may not be achieved due to these limitations. In addition, for all methods, matrix interferences, dilutions, and %Solids may elevate method reporting limits above regulatory standards. ESS Laboratory can provide, upon request, a Data Checker (regulatory standard comparison spreadsheet) electronic deliverable which will highlight these exceedances.

Lab Number	Sample Name	Matrix	Analysis
1612316-01	MCI DRILL	Soil	\$
1612316-02	1991 SITE 2 ALPHA-1	Soil	\$
1612316-03	ANNUAL DEPLOYMENT	Soil	\$
1612316-04	FOAM MIX	Aqueous	§

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: HYA

ESS Laboratory Work Order: 1612316

PROJECT NARRATIVE

No unusual observations noted.

End of Project Narrative.

DATA USABILITY LINKS

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: HYA

ESS Laboratory Work Order: 1612316

CURRENT SW-846 METHODOLOGY VERSIONS

Prep Methods

Analytical Methods

1010A - Flashpoint 6010C - ICP 6020A - ICP MS 7010 - Graphite Furnace 7196A - Hexavalent Chromium 7470A - Aqueous Mercury 7471B - Solid Mercury 8011 - EDB/DBCP/TCP 8015C - GRO/DRO 8081B - Pesticides 8082A - PCB 8100M - TPH 8151A - Herbicides 8260B - VOA 8270D - SVOA 8270D SIM - SVOA Low Level 9014 - Cyanide 9038 - Sulfate 9040C - Aqueous pH 9045D - Solid pH (Corrosivity) 9050A - Specific Conductance 9056A - Anions (IC) 9060A - TOC 9095B - Paint Filter MADEP 04-1.1 - EPH / VPH

3005A - Aqueous ICP Digestion
3020A - Aqueous Graphite Furnace / ICP MS Digestion
3050B - Solid ICP / Graphite Furnace / ICP MS Digestion
3060A - Solid Hexavalent Chromium Digestion
3510C - Separatory Funnel Extraction
3520C - Liquid / Liquid Extraction
3540C - Manual Soxhlet Extraction
3541 - Automated Soxhlet Extraction
3546 - Microwave Extraction
3580A - Waste Dilution
5030B - Aqueous Purge and Trap
5030C - Aqueous Purge and Trap
5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: HYA

Client Sample ID: MCI DRILL

Date Sampled: 12/09/16 11:30

ESS Laboratory Work Order: 1612316

Subcontracted Analysis

ESS Laboratory Sample ID: 1612316-01 Sample Matrix: Soil

<u>Analyte</u> PFOS	<u>Results</u> See Attached	<u>Units</u>	<u>MRL</u>	<u>Method</u>	<u>DF</u>	<u>Analyst</u>	<u>Analyzed</u>	<u>I/V</u>	<u>F/V</u>
Client Sample ID: 1991 SITE 2 ALPHA Date Sampled: 12/09/16 11:00	A-1			ESS Laborator Sample Matrix		e ID: 161231	16-02		
<u>Analyte</u> PFOS	<u>Results</u> See Attached	<u>Units</u>	<u>MRL</u>	<u>Method</u>	<u>DF</u>	<u>Analyst</u>	<u>Analyzed</u>	<u>I/V</u>	<u>F/V</u>
Client Sample ID: ANNUAL DEPLOY Date Sampled: 12/09/16 12:00	MENT			ESS Laborator Sample Matrix		e ID: 161231	16-03		
<u>Analyte</u> PFOS	<u>Results</u> See Attached	<u>Units</u>	<u>MRL</u>	<u>Method</u>	<u>DF</u>	<u>Analyst</u>	<u>Analyzed</u>	<u>I/V</u>	<u>F/V</u>
Client Sample ID: FOAM MIX Date Sampled: 12/09/16 14:15				ESS Laborator Sample Matrix	•		16-04		
<u>Analyte</u> PFOA	<u>Results</u> See Attached	<u>Units</u>	<u>MRL</u>	<u>Method</u>	<u>DF</u>	<u>Analyst</u>	<u>Analyzed</u>	<u>I/V</u>	<u>F/V</u>

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: HYA

ESS Laboratory Work Order: 1612316

Notes and Definitions

Z-08	See Attached
ND	Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
MDL	Method Detection Limit
MRL	Method Reporting Limit
LOD	Limit of Detection
LOQ	Limit of Quantitation
DL	Detection Limit
I/V	Initial Volume
F/V	Final Volume
§	Subcontracted analysis; see attached report
1	Range result excludes concentrations of surrogates and/or internal standards eluting in that range.
2	Range result excludes concentrations of target analytes eluting in that range.
3	Range result excludes the concentration of the C9-C10 aromatic range.
Avg	Results reported as a mathematical average.
NR	No Recovery
[CALC]	Calculated Analyte
SUB	Subcontracted analysis; see attached report

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: HYA

ESS Laboratory Work Order: 1612316

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/water/dwp-services/labcert/documents/AllLabs.xls

> Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.depweb.state.pa.us/portal/server.pt/community/labs/13780/laboratory_accreditation_program/590095

Your P.O. #: B02623 Your Project #: 1612316 Your C.O.C. #: na

Attention:Shawn Morrell

ESS Laboratory 185 Frances Avenue Cranston, RI USA 02910-2211

> Report Date: 2016/12/29 Report #: R4306211 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B6R1181 Received: 2016/12/13, 15:04

Sample Matrix: Soil # Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Moisture	3	N/A	2016/12/28	CAM SOP-00445	Carter 2nd ed 51.2 m
PFOS and PFOA in soil	3	2016/12/16	2016/12/20	CAM SOP-00894	EPA537 m

Sample Matrix: Water # Samples Received: 1

	Date		Date		
Analyses	Quantity Extra	icted	Analyzed	Laboratory Method	Reference
PFOS and PFOA in water	1 2016	/12/14	2016/12/16	CAM SOP-00894	EPA 537 m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods. Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your P.O. #: B02623 Your Project #: 1612316 Your C.O.C. #: na

Attention:Shawn Morrell

ESS Laboratory 185 Frances Avenue Cranston, RI USA 02910-2211

> Report Date: 2016/12/29 Report #: R4306211 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B6R1181 Received: 2016/12/13, 15:04

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Melissa DiGrazia, Project Manager - ATUT Email: MDiGrazia@maxxam.ca Phone# (905) 817-5700

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

ESS Laboratory Client Project #: 1612316 Your P.O. #: B02623

RESULTS OF ANALYSES OF SOIL

Maxxam ID		DPU291		DPU292		DPU293		
Sampling Date		2016/12/09 11:30		2016/12/09 11:00		2016/12/09 12:00		
COC Number		na		na		na		
	UNITS	1612316-01	RDL	1612316-02	RDL	1612316-03	RDL	QC Batch
Inorganics								
Moisture	%	9.3	1.0	3.5	1.0	10	1.0	4807644
Miscellaneous Parameters								
6:2 Fluorotelomer sulfonate	ug/kg	270 (1)	10	0.40 U	1.0	4300 (2)	100	4796218
8:2 Fluorotelomer sulfonate	ug/kg	550 (2)	100	0.40 U	1.0	1200 (2)	100	4796218
Perfluorobutane Sulfonate (PFBS)	ug/kg	0.40 U	1.0	0.40 U	1.0	4.0 U (1)	10	4796218
Perfluorobutanoic acid	ug/kg	2.1	1.0	0.40 U	1.0	13 (1)	10	4796218
Perfluorodecane Sulfonate	ug/kg	0.40 U	1.0	0.40 U	1.0	4.0 U (1)	10	4796218
Perfluorodecanoic Acid (PFDA)	ug/kg	20	1.0	0.40 U	1.0	69 (1)	10	4796218
Perfluorododecanoic Acid (PFDoA)	ug/kg	6.6	1.0	0.40 U	1.0	28 (1)	10	4796218
Perfluoroheptanoic Acid (PFHpA)	ug/kg	8.4	1.0	0.40 U	1.0	20 (1)	10	4796218
Perfluorohexane Sulfonate (PFHxS)	ug/kg	0.50 J	1.0	0.40 U	1.0	4.0 U (1)	10	4796218
Perfluorohexanoic Acid (PFHxA)	ug/kg	17	1.0	0.40 U	1.0	150 (1)	10	4796218
Perfluoro-n-Octanoic Acid (PFOA)	ug/kg	23	1.0	0.20 U	1.0	100 (1)	10	4796218
Perfluorononanoic Acid (PFNA)	ug/kg	14	1.0	0.20 U	1.0	31 (1)	10	4796218
Perfluorooctane Sulfonamide (PFOSA)	ug/kg	0.30 J	1.0	0.40 U	1.0	4.0 U (1)	10	4796218
Perfluorooctane Sulfonate (PFOS)	ug/kg	24	1.0	0.40 U	1.0	1.9 J (1)	10	4796218
Perfluoropentanoic Acid (PFPeA)	ug/kg	6.0	1.0	0.40 U	1.0	29 (1)	10	4796218
Perfluorotetradecanoic Acid	ug/kg	2.1	1.0	0.40 U	1.0	10 (1)	10	4796218
Perfluorotridecanoic Acid	ug/kg	140 (1)	10	0.40 U	1.0	6.0 J (1)	10	4796218
Perfluoroundecanoic Acid (PFUnA)	ug/kg	440 (1)	10	0.40 U	1.0	15 (1)	10	4796218
Surrogate Recovery (%)								
13C4-Perfluorooctanesulfonate	%	72	N/A	81	N/A	88	N/A	4796218
13C4-Perfluorooctanoic acid	%	67	N/A	88	N/A	70	N/A	4796218
13C8-Perfluorooctanesulfonamide	%	75	N/A	83	N/A	91	N/A	4796218

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Due to high concentration of the target analyte, sample required 10x dilution. Detection limit was adjusted accordingly.

(2) Due to high concentration of the target analyte, sample required 100x dilution. Detection limit was adjusted accordingly.

ESS Laboratory Client Project #: 1612316 Your P.O. #: B02623

RESULTS OF ANALYSES OF WATER

Maxxam ID		DPU294							
Sampling Date		2016/12/09							
COC Number		14:15							
COC Number	UNITS	na		OC Datab					
	UNITS	1612316-04	RDL	QC Batch					
Miscellaneous Parameters	1								
6:2 Fluorotelomer sulfonate	ug/L	33 (1)	8.0	4794191					
8:2 Fluorotelomer sulfonate	ug/L	5.7 J (1)	8.0	4794191					
Perfluorobutane Sulfonate (PFBS)	ug/L	5.0 U (1)	8.0	4794191					
Perfluorobutanoic acid	ug/L	6.8 J (1)	8.0	4794191					
Perfluorodecane Sulfonate	ug/L	5.0 U (1)	8.0	4794191					
Perfluorodecanoic Acid (PFDA)	ug/L	2.8 J (1)	8.0	4794191					
Perfluorododecanoic Acid (PFDoA)	ug/L	5.0 U (1)	8.0	4794191					
Perfluoroheptanoic Acid (PFHpA)	ug/L	3.4 J (1)	8.0	4794191					
Perfluorohexane Sulfonate (PFHxS)	ug/L	2.1 J (1)	8.0	4794191					
Perfluorohexanoic Acid (PFHxA)	ug/L	14 (1)	8.0	4794191					
Perfluoro-n-Octanoic Acid (PFOA)	ug/L	19 (1)	8.0	4794191					
Perfluorononanoic Acid (PFNA)	ug/L	93 (1)	8.0	4794191					
Perfluorooctane Sulfonamide (PFOSA)	ug/L	5.0 U (1)	8.0	4794191					
Perfluorooctane Sulfonate (PFOS)	ug/L	5.0 U (1)	8.0	4794191					
Perfluoropentanoic Acid (PFPeA)	ug/L	3.7 J (1)	8.0	4794191					
Perfluorotetradecanoic Acid	ug/L	5.0 U (1)	8.0	4794191					
Perfluorotridecanoic Acid	ug/L	10 (1)	8.0	4794191					
Perfluoroundecanoic Acid (PFUnA)	ug/L	29 (1)	8.0	4794191					
Surrogate Recovery (%)									
13C4-Perfluorooctanesulfonate	%	90	N/A	4794191					
13C4-Perfluorooctanoic acid	%	80	N/A	4794191					
13C8-Perfluorooctanesulfonamide	%	63	N/A	4794191					
RDL = Reportable Detection Limit									
QC Batch = Quality Control Batch									
N/A = Not Applicable									
(1) Due to sample matrix, sample required high level analysis with 10x									
dilution. Detection limit was adjusted accordingly.									

ESS Laboratory Client Project #: 1612316 Your P.O. #: B02623

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	DPU291 1612316-01 Soil					Collected: Shipped: Received:	2016/12/09 2016/12/13
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	4807644	N/A	2016/12/28	Chun Yan	
PFOS and PFOA in soil		LCMS	4796218	2016/12/16	2016/12/20	Colm McN	amara
Maxxam ID: Sample ID: Matrix:	DPU292 1612316-02 Soil					Collected: Shipped: Received:	2016/12/09 2016/12/13
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	4807644	N/A	2016/12/28	Chun Yan	
PFOS and PFOA in soil		LCMS	4796218	2016/12/16	2016/12/20	Colm McN	amara
Maxxam ID: Sample ID: Matrix:	DPU293 1612316-03 Soil					Collected: Shipped: Received:	2016/12/09 2016/12/13
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	4807644	N/A	2016/12/28	Chun Yan	
PFOS and PFOA in soil		LCMS	4796218	2016/12/16	2016/12/20	Colm McN	amara
Maxxam ID: Sample ID: Matrix:	DPU294 1612316-04 Water					Collected: Shipped: Received:	2016/12/09 2016/12/13
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
PFOS and PFOA in water		LCMS	4794191	2016/12/14	2016/12/16	Colm McN	amara

Maxxam Job #: B6R1181 Report Date: 2016/12/29 ESS Laboratory Client Project #: 1612316 Your P.O. #: B02623

GENERAL COMMENTS

Results relate only to the items tested.

ESS Laboratory Client Project #: 1612316 Your P.O. #: B02623

QUALITY ASSURANCE REPORT

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4794191	CM5	Matrix Spike	13C4-Perfluorooctanesulfonate	2016/12/16		91	%	70 - 130
			13C4-Perfluorooctanoic acid	2016/12/16		88	%	70 - 130
			13C8-Perfluorooctanesulfonamide	2016/12/16		87	%	60 - 120
			6:2 Fluorotelomer sulfonate	2016/12/16		96	%	70 - 130
			8:2 Fluorotelomer sulfonate	2016/12/16		99	%	70 - 130
			Perfluorobutane Sulfonate (PFBS)	2016/12/16		91	%	70 - 130
			Perfluorobutanoic acid	2016/12/16		112	%	70 - 130
			Perfluorodecane Sulfonate	2016/12/16		111	%	70 - 130
			Perfluoroheptanoic Acid (PFHpA)	2016/12/16		100	%	70 - 130
			Perfluorohexane Sulfonate (PFHxS)	2016/12/16		99	%	70 - 130
			Perfluorohexanoic Acid (PFHxA)	2016/12/16		97	%	70 - 130
			Perfluorononanoic Acid (PFNA)	2016/12/16		103	%	70 - 130
			Perfluorooctane Sulfonamide (PFOSA)	2016/12/16		101	%	70 - 130
			Perfluoropentanoic Acid (PFPeA)	2016/12/16		102	%	70 - 130
			Perfluorotetradecanoic Acid	2016/12/16		110	%	70 - 130
			Perfluorotridecanoic Acid	2016/12/16		105	%	70 - 130
			Perfluoroundecanoic Acid (PFUnA)	2016/12/16		99	%	70 - 130
			Perfluorodecanoic Acid (PFDA)	2016/12/16		105	%	70 - 130
			Perfluorododecanoic Acid (PFDoA)	2016/12/16		104	%	70 - 130
			Perfluoro-n-Octanoic Acid (PFOA)	2016/12/16		101	%	70 - 130
			Perfluorooctane Sulfonate (PFOS)	2016/12/16		NC	%	70 - 130
4794191	CM5	RPD	6:2 Fluorotelomer sulfonate	2016/12/16	4.7		%	30
			8:2 Fluorotelomer sulfonate	2016/12/16	7.6		%	30
			Perfluorobutane Sulfonate (PFBS)	2016/12/16	12		%	30
			Perfluorobutanoic acid	2016/12/16	1.3		%	30
			Perfluorodecane Sulfonate	2016/12/16	6.3		%	30
			Perfluoroheptanoic Acid (PFHpA)	2016/12/16	1.8		%	30
			Perfluorohexane Sulfonate (PFHxS)	2016/12/16	6.0		%	30
			Perfluorohexanoic Acid (PFHxA)	2016/12/16	4.3		%	30
			Perfluorononanoic Acid (PFNA)	2016/12/16	5.1		%	30
			Perfluorooctane Sulfonamide (PFOSA)	2016/12/16	13		%	30
			Perfluoropentanoic Acid (PFPeA)	2016/12/16	0.35		%	30
			Perfluorotetradecanoic Acid	2016/12/16	7.5		%	30
			Perfluorotridecanoic Acid	2016/12/16	3.0		%	30
			Perfluoroundecanoic Acid (PFUnA)	2016/12/16	4.2		%	30
			Perfluorodecanoic Acid (PFDA)	2016/12/16	4.6		%	30
			Perfluorododecanoic Acid (PFDoA)	2016/12/16	4.9		%	30
			Perfluoro-n-Octanoic Acid (PFOA)	2016/12/16	2.8		%	30
			Perfluorooctane Sulfonate (PFOS)	2016/12/16	NC		%	30
4794191	CM5	Spiked Blank	13C4-Perfluorooctanesulfonate	2016/12/16		97	%	70 - 130
			13C4-Perfluorooctanoic acid	2016/12/16		98	%	70 - 130
			13C8-Perfluorooctanesulfonamide	2016/12/16		97	%	60 - 120
			6:2 Fluorotelomer sulfonate	2016/12/16		104	%	70 - 130
			8:2 Fluorotelomer sulfonate	2016/12/16		106	%	70 - 130
			Perfluorobutane Sulfonate (PFBS)	2016/12/16		111	%	70 - 130
			Perfluorobutanoic acid	2016/12/16		105	%	70 - 130
			Perfluorodecane Sulfonate	2016/12/16		104	%	70 - 130
			Perfluoroheptanoic Acid (PFHpA)	2016/12/16		101	%	70 - 130
			Perfluorohexane Sulfonate (PFHxS)	2016/12/16		110	%	70 - 130
			Perfluorohexanoic Acid (PFHxA)	2016/12/16		101	%	70 - 130
			Perfluorononanoic Acid (PFNA)	2016/12/16		110	%	70 - 130
			Perfluorooctane Sulfonamide (PFOSA)	2016/12/16		109	%	70 - 130
			Perfluoropentanoic Acid (PFPeA)	2016/12/16		106	%	70 - 130

ESS Laboratory Client Project #: 1612316 Your P.O. #: B02623

				Det -				
QA/QC Batch I	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
Datch	mit	QC Type	Perfluorotetradecanoic Acid	2016/12/16	Value	109	%	70 - 130
			Perfluorotridecanoic Acid	2016/12/16		109	%	70 - 130
			Perfluoroundecanoic Acid (PFUnA)	2016/12/16		105	%	70 - 130
			Perfluorodecanoic Acid (PFDA)	2016/12/16		105	%	70 - 130 70 - 130
			Perfluorododecanoic Acid (PFDA)	2016/12/16		109	%	70 - 130 70 - 130
			Perfluoro-n-Octanoic Acid (PFDOA)	2016/12/16		108	%	70 - 130 70 - 130
			Perfluorooctane Sulfonate (PFOS)	2016/12/16		108	%	70 - 130 70 - 130
4794191 (Method Blank	13C4-Perfluorooctanesulfonate	2016/12/16		108	%	70 - 130 70 - 130
+/94191 (13C4-Perfluorooctanoic acid	2016/12/16		96	%	70 - 130
			13C8-Perfluorooctanesulfonamide	2016/12/16		89	%	70 - 130 60 - 120
			6:2 Fluorotelomer sulfonate		0.50 U,	89		00 - 120
			6.2 Fluoroteiomer sunonate	2016/12/16	RDL=0.80		ug/L	
			8:2 Fluorotelomer sulfonate	2016/12/16	0.60 U, RDL=0.80		ug/L	
			Perfluorobutane Sulfonate (PFBS)	2016/12/16	0.50 U, RDL=0.80		ug/L	
			Perfluorobutanoic acid	2016/12/16	0.50 U, RDL=0.80		ug/L	
			Perfluorodecane Sulfonate	2016/12/16	0.50 U, RDL=0.80		ug/L	
			Perfluoroheptanoic Acid (PFHpA)	2016/12/16	0.60 U, RDL=0.80		ug/L	
			Perfluorohexane Sulfonate (PFHxS)	2016/12/16	0.50 U, RDL=0.80		ug/L	
			Perfluorohexanoic Acid (PFHxA)	2016/12/16	0.50 U, RDL=0.80		ug/L	
			Perfluorononanoic Acid (PFNA)	2016/12/16	0.50 U, RDL=0.80		ug/L	
			Perfluorooctane Sulfonamide (PFOSA)	2016/12/16	0.50 U, RDL=0.80		ug/L	
			Perfluoropentanoic Acid (PFPeA)	2016/12/16	0.50 U, RDL=0.80		ug/L	
			Perfluorotetradecanoic Acid	2016/12/16	0.50 U, RDL=0.80		ug/L	
			Perfluorotridecanoic Acid	2016/12/16	0.60 U, RDL=0.80		ug/L	
			Perfluoroundecanoic Acid (PFUnA)	2016/12/16	0.50 U, RDL=0.80		ug/L	
			Perfluorodecanoic Acid (PFDA)	2016/12/16	0.50 U, RDL=0.80		ug/L	
			Perfluorododecanoic Acid (PFDoA)	2016/12/16	0.50 U, RDL=0.80		ug/L	
			Perfluoro-n-Octanoic Acid (PFOA)	2016/12/16	0.50 U, RDL=0.80		ug/L	
			Perfluorooctane Sulfonate (PFOS)	2016/12/16	0.50 U, RDL=0.80		ug/L	
4796218 0	CM5	Matrix Spike	13C4-Perfluorooctanesulfonate	2016/12/20		82	%	50 - 130
			13C4-Perfluorooctanoic acid	2016/12/20		88	%	50 - 130
			13C8-Perfluorooctanesulfonamide	2016/12/20		70	%	50 - 130
			6:2 Fluorotelomer sulfonate	2016/12/20		102	%	70 - 130
			8:2 Fluorotelomer sulfonate	2016/12/20		99	%	70 - 130

ESS Laboratory Client Project #: 1612316 Your P.O. #: B02623

QA/QC				Date		_		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Perfluorobutane Sulfonate (PFBS)	2016/12/20		115	%	70 - 130
			Perfluorobutanoic acid	2016/12/20		120	%	70 - 130
			Perfluorodecane Sulfonate	2016/12/20		101	%	70 - 130
			Perfluorodecanoic Acid (PFDA)	2016/12/20		120	%	70 - 130
			Perfluorododecanoic Acid (PFDoA)	2016/12/20		102	%	70 - 130
			Perfluorononanoic Acid (PFNA)	2016/12/20		113	%	70 - 130
			Perfluorooctane Sulfonamide (PFOSA)	2016/12/20		121	%	70 - 130
			Perfluorotetradecanoic Acid	2016/12/20		123	%	70 - 130
			Perfluorotridecanoic Acid	2016/12/20		122	%	70 - 130
			Perfluoroundecanoic Acid (PFUnA)	2016/12/20		110	%	70 - 130
			Perfluoroheptanoic Acid (PFHpA)	2016/12/20		111	%	70 - 130
			Perfluorohexane Sulfonate (PFHxS)	2016/12/20		116	%	70 - 130
			Perfluorohexanoic Acid (PFHxA)	2016/12/20		118	%	70 - 130
			Perfluoro-n-Octanoic Acid (PFOA)	2016/12/20		117	%	70 - 130
			Perfluorooctane Sulfonate (PFOS)	2016/12/20		111	%	70 - 130
4700010	CNAE		Perfluoropentanoic Acid (PFPeA)	2016/12/20	0.4	105	%	70 - 130
4796218	CIVI5	RPD	6:2 Fluorotelomer sulfonate	2016/12/20	9.4		%	30
			8:2 Fluorotelomer sulfonate	2016/12/20	21		%	30
			Perfluorobutane Sulfonate (PFBS)	2016/12/20	2.7		%	30
			Perfluorobutanoic acid	2016/12/20	3.7		%	30
			Perfluorodecane Sulfonate	2016/12/20	8.3		%	30
			Perfluorodecanoic Acid (PFDA)	2016/12/20	1.0		%	30
			Perfluorododecanoic Acid (PFDoA)	2016/12/20	0.39		%	30
			Perfluorononanoic Acid (PFNA)	2016/12/20	11		%	30
			Perfluorooctane Sulfonamide (PFOSA)	2016/12/20	5.4		%	25
			Perfluorotetradecanoic Acid	2016/12/20	8.1		%	30
			Perfluorotridecanoic Acid	2016/12/20	0		%	30
			Perfluoroundecanoic Acid (PFUnA)	2016/12/20	3.0		%	30
			Perfluoroheptanoic Acid (PFHpA)	2016/12/20	1.4		%	30
			Perfluorohexane Sulfonate (PFHxS)	2016/12/20	0.69		%	30
			Perfluorohexanoic Acid (PFHxA)	2016/12/20	1.0		%	30
			Perfluoro-n-Octanoic Acid (PFOA)	2016/12/20	2.4		%	30
			Perfluorooctane Sulfonate (PFOS)	2016/12/20	0.36		%	30
4706240	CN 45	Caller d Dlavels	Perfluoropentanoic Acid (PFPeA)	2016/12/20	1.9	70	%	30
4796218	CIVIS	Spiked Blank	13C4-Perfluorooctanesulfonate 13C4-Perfluorooctanoic acid	2016/12/20		78	%	50 - 130
			13C4-Perfluorooctanoic acid 13C8-Perfluorooctanesulfonamide	2016/12/20		84 72	% %	50 - 130
				2016/12/20				50 - 130
			6:2 Fluorotelomer sulfonate	2016/12/20		101	%	70 - 130
			8:2 Fluorotelomer sulfonate	2016/12/20		92 107	%	70 - 130
			Perfluorobutane Sulfonate (PFBS)	2016/12/20		107	%	70 - 130
			Perfluorobutanoic acid	2016/12/20		97	%	70 - 130
			Perfluorodecane Sulfonate	2016/12/20		99	%	70 - 130
			Perfluorodecanoic Acid (PFDA)	2016/12/20		102	%	70 - 130
			Perfluorododecanoic Acid (PFDoA)	2016/12/20		90	%	70 - 130
			Perfluorononanoic Acid (PFNA)	2016/12/20		100	%	70 - 130
			Perfluorooctane Sulfonamide (PFOSA)	2016/12/20		105	%	70 - 130
			Perfluorotetradecanoic Acid	2016/12/20		106	%	70 - 130
			Perfluorotridecanoic Acid (DELLEA)	2016/12/20		112	%	70 - 130
			Perfluoroundecanoic Acid (PFUnA)	2016/12/20		97 102	%	70 - 130
			Perfluoroheptanoic Acid (PFHpA)	2016/12/20		103	%	70 - 130
			Perfluorohexane Sulfonate (PFHxS)	2016/12/20		109	%	70 - 130
			Perfluorohexanoic Acid (PFHxA)	2016/12/20		107	%	70 - 130
			Perfluoro-n-Octanoic Acid (PFOA)	2016/12/20		106	%	70 - 130

Maxxam Job #: B6R1181 Report Date: 2016/12/29 ESS Laboratory Client Project #: 1612316 Your P.O. #: B02623

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Perfluorooctane Sulfonate (PFOS)	2016/12/20		99	%	70 - 130
			Perfluoropentanoic Acid (PFPeA)	2016/12/20		93	%	70 - 130
4796218	CM5	Method Blank	13C4-Perfluorooctanesulfonate	2016/12/20		116	%	50 - 130
			13C4-Perfluorooctanoic acid	2016/12/20		111	%	50 - 130
			13C8-Perfluorooctanesulfonamide	2016/12/20		83	%	50 - 130
			6:2 Fluorotelomer sulfonate	2016/12/20	0.40 U, RDL=1.0		ug/kg	
			8:2 Fluorotelomer sulfonate	2016/12/20	0.40 U, RDL=1.0		ug/kg	
			Perfluorobutane Sulfonate (PFBS)	2016/12/20	0.40 U, RDL=1.0		ug/kg	
			Perfluorobutanoic acid	2016/12/20	0.40 U, RDL=1.0		ug/kg	
			Perfluorodecane Sulfonate	2016/12/20	0.40 U, RDL=1.0		ug/kg	
			Perfluorodecanoic Acid (PFDA)	2016/12/20	0.40 U, RDL=1.0		ug/kg	
			Perfluorododecanoic Acid (PFDoA)	2016/12/20	0.40 U, RDL=1.0		ug/kg	
			Perfluorononanoic Acid (PFNA)	2016/12/20	0.20 U, RDL=1.0		ug/kg	
			Perfluorooctane Sulfonamide (PFOSA)	2016/12/20	0.40 U, RDL=1.0		ug/kg	
			Perfluorotetradecanoic Acid	2016/12/20	0.40 U, RDL=1.0		ug/kg	
			Perfluorotridecanoic Acid	2016/12/20	0.40 U, RDL=1.0		ug/kg	
			Perfluoroundecanoic Acid (PFUnA)	2016/12/20	0.40 U, RDL=1.0		ug/kg	
			Perfluoroheptanoic Acid (PFHpA)	2016/12/20	0.40 U, RDL=1.0		ug/kg	
			Perfluorohexane Sulfonate (PFHxS)	2016/12/20	0.40 U, RDL=1.0		ug/kg	
			Perfluorohexanoic Acid (PFHxA)	2016/12/20	0.40 U, RDL=1.0		ug/kg	
			Perfluoro-n-Octanoic Acid (PFOA)	2016/12/20	0.20 U, RDL=1.0		ug/kg	
			Perfluorooctane Sulfonate (PFOS)	2016/12/20	0.40 U, RDL=1.0		ug/kg	
			Perfluoropentanoic Acid (PFPeA)	2016/12/20	0.40 U, RDL=1.0		ug/kg	

ESS Laboratory Client Project #: 1612316 Your P.O. #: B02623

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date			
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery UNITS	QC Limits
4807644	NS3	RPD	Moisture	2016/12/28	0.71	%	20

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

ESS Laboratory Client Project #: 1612316 Your P.O. #: B02623

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

AN.

Adam Robinson, Supervisor, LC/MS/MS

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Rellunder

Sin Chii Chia, Scientific Services

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

									1		,				Ī
ESS Laboratory	oratory		MAXXAM	AM	CH	CHAIN OF CUSTODY	SUST	Удо	<u> </u>	ESS Lab #	+ 1612316	316			
Division of Thielsch Engineering. Inc.	vielsch Enai	neering, Inc.	_	Turn Time	Stand	Standard DUE 12/19/16	12/19/	16			Penorting 1 (mits -	nits -			
185 Frances	Avenue.Cra	185 Frances Avenue Cranston RI 02910-2211		Regulatory State:	MA	MA RI CT NH NJ NY ME Other_	ME OU	her			nu nu na h				_
Tel. (401)461-7181 Ea:	1-7181 Fax	Tel. (401)461-7181 Fax (401)461-4486		Is this project for any MA-MCP Navy		ing:(please cl CT DEP	rcle) Other			Ele	Electonic Deliverables		Excet Acc	Access PDF	
Co. Name		ESS Laboratory				Project Name		1612316							
Contact Person		Shawn Morrell	_	Proj. Location						sisyli		166 AY			
Address			City , State			Zip	a	РО# В02623	23	enA		IA AO			
Tel.	ext 3083		email: sm	smorrell@thielsch.com	sch.com							-14/8	- -		
ESS Lab ID	Date	Collection Time	Grab -G Composite-C	Matrix	Sample ID	ie ID	Pres Code	# of Containers	Type of Container	Vol of Container		50-14			
	12/9/16	1130	υ	S	1612316-01	16-01	-		ď			 			
	12/9/16	1100	ပ	S	1612316-02	16-02	-	-	Ρ			×			
	12/9/16	1200	ပ	s	1612316-03	16-03	-	F	٩			×			
	12/9/16	1415	IJ	-	1612316-04	16-04	ŀ	1	٩			×		_	
													_	_	
Container Type: P-P	'oly G-Glass AG-A	Container Type: P-Poly G-Glass AG-Amber Glass S-Sterile V-VOA	+VOA		Matrix: S-Soit St	Matric: S-Soit SD-Solid D-Sludge WW-Wastewater GW-Groundwater SW-Surface Water DW-Drinking Water O-Oit W-Wipes F-Filler	V-Wastewater	- GW-Groundwa	iter SW-Surfa	ce Water DW-	Drinking Water	M-W 110-0	fipes F-Filte	×	
Cooler Present	ent	Yes	2	Internal Use Onl	se Only	Preservation Code: 1-NP, 2-HCl, 3-H2SO4, 4-HNO3, 5-NaOH, 6-MeOH, 7-Asorbic Acid, 8-ZnAct, 9-	: 1-NP, 2-H	cl, 3-H2SO4,	4-HNO3, 5-N	laOH, 6-MeO	H, 7-Asorbic /	Acid, 8-Zn/	Vct. 9-		
Seals Intact	Yes	No NA:		[] Pickup		Sampled by :									
Cooler Temperature:	perature:			[] Technician	cian	Comments:				see attac	see attached analytes	ytes			
Reinquished by: (Signadre, Bate &	ignaktre, Bate & Ti	1635	Received by: (Sig	Received by: (Signature, Date & Time) Red &	â		Relinquisher	Relinquished by. (Signature, Date & Time)	Date & Time)		Received by: (Signature, Date & Time)	õignature, Di	ate & Time)		
Reinquished by (S	(Signature, Date & Time)	(eui	Received by: (Sig	Received by: (Signature, Date & Time)	(9		Relinquishe	Relinquished by: (Signature, Date & Time)	Date & Time)		Received by. (Signature, Data & Time)	Signature, D	ate & Time)		
 By circling MA-MI 	CP, client acknowle	 By circling MA-MCP, client acknowledges sampets wore 			Please fax to the	Please fax to the laboratory all changes to Chain of Custody	anges to (Chain of Cus	stody						

-

-

Please fax to the laboratory all changes to chain of custory Report Method Blank & Laboratory Control Sample Results

collected in accordance with MADEP CAM VIIA

ESS Laboratory	CHAIN OF	CHAIN OF CUSTODY Page / of /
Щ U	Turn Time Zandard Other If faster than 5 days, prior approval by laboratory is required #	Reporting Limits
Tel. (401) 461-7181 Fax (401) 461-4486 www.esslaboratory.com	MA) RI CT NH NJ NY ME O MA RI CT NH NJ NY ME O MA-MCP Navy USACE	Other
Co. Name Rolling Project	\sim	Write Required Analysis
		×
Somewhere it as 636 31	6 Zip PO#	ntainet TFT TTT TTT
Telephone # Fax #	[Entail Address) Longley with	iirré) V S
ESS LAB Date Collection Sample # Time Construction	Sample Identification (20 Char. or less)	Type of a
1 12/9/4 11 30 X 15	MCI DRILL/ORGIN	184
/	1991 SITE 2 'ALPHA-1	
3 1/9/9/ 1000 × 100 × 10	ANNUAL DEPLOYMENT	
7 X SIVE 41/2/01 +	FEAM WIN	1821
-		
Container Type: (P-Pol) G-Glass S-Sterile V-VOA Matrix (S-Sed	SD-Solid D-Sludge WW-Waste Water	GW-Ground Water SW-Surface Water DW-Drinking Water O-Oil W-Wipes F-Filters
Cooler PresentYes NoDeernal Use Only	Preservation Code	1- NP, 2- HC1, 3- H,SO,, 4- HNO,, 5- NaOH, 6- McOH, 7- Asorbic Acid, 8- ZnAct, 9- NONE
Yes	Sampled by: CDE LONGO	
Cooler Temp: 124-4 cmp 1, 4/ [] Technicians	Comments:	
- Ruhaquistand by: (Signature) Date/Time Bereined by: (Signature)	Signature) Date/Time Relinquished by: (Signature)	gnature) Date/Time Received by Signature) Date/Time n/12/12/16/16/23
Relinquished by: (Signature) Date/Time Received by: (Signature)	• Date/Time Relin	
*By circling MA-MCP, client acknowledges samples were collected in accordance with MADEP CAM VII A	Please fax all changes to Chain of Custody in writing.	ting. 1 (White) Lab Copy 2 (Yellow) Client Receipt

1

.

......

Page 21 of 21

10/26/04 A

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Jesse Bean Horsley & Witten 90 Route 6A Sandwich, MA 02563

RE: Barn. On-Call #4 (17027) ESS Laboratory Work Order Number: 1706533

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director

Analytical Summary

REVIEWED By ESS Laboratory at 10:59 am, Jul 18, 2017

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

Subcontracted Analyses Maxxam Analytics - Cheektowaga, NY

PFOS

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4

ESS Laboratory Work Order: 1706533

SAMPLE RECEIPT

The following samples were received on June 20, 2017 for the analyses specified on the enclosed Chain of Custody Record.

Matrix

Lab Number 1706533-01 1706533-02 1706533-03

1706533-04

Sample Name KMART SW HW-1 HW-23 HW-19D

Analysis Surface Water \$ Ground Water \$ \$ Ground Water \$ Ground Water

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4

ESS Laboratory Work Order: 1706533

PROJECT NARRATIVE

No unusual observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4

Analytical Methods

ESS Laboratory Work Order: 1706533

CURRENT SW-846 METHODOLOGY VERSIONS

Prep Methods

1010A - Flashpoint 6010C - ICP 6020A - ICP MS 7010 - Graphite Furnace 7196A - Hexavalent Chromium 7470A - Aqueous Mercury 7471B - Solid Mercury 8011 - EDB/DBCP/TCP 8015C - GRO/DRO 8081B - Pesticides 8082A - PCB 8100M - TPH 8151A - Herbicides 8260B - VOA 8270D - SVOA 8270D SIM - SVOA Low Level 9014 - Cyanide 9038 - Sulfate 9040C - Aqueous pH 9045D - Solid pH (Corrosivity) 9050A - Specific Conductance 9056A - Anions (IC) 9060A - TOC 9095B - Paint Filter MADEP 04-1.1 - EPH / VPH

3005A - Aqueous ICP Digestion
3020A - Aqueous Graphite Furnace / ICP MS Digestion
3050B - Solid ICP / Graphite Furnace / ICP MS Digestion
3060A - Solid Hexavalent Chromium Digestion
3510C - Separatory Funnel Extraction
3520C - Liquid / Liquid Extraction
3540C - Manual Soxhlet Extraction
3541 - Automated Soxhlet Extraction
3546 - Microwave Extraction
3580A - Waste Dilution
5030B - Aqueous Purge and Trap
5030C - Aqueous Purge and Trap
5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4

ESS Laboratory Work Order: 1706533

Subcontracted Analysis

Client Sample ID: KMART SW Date Sampled: 06/20/17 08:15 ESS Laboratory Sample ID: 1706533-01 Sample Matrix: Surface Water

<u>Analyte</u> PFOS	<u>Results</u> See Attached	<u>Units</u>	<u>MRL</u>	<u>Method</u>	<u>DF</u>	<u>Analyst</u>	<u>Analyzed</u>	<u>I/V</u>	<u>F/V</u>
Client Sample ID: HW-1 Date Sampled: 06/20/17 11:50				ESS Laborator Sample Matrix			33-02		
<u>Analyte</u> PFOS	<u>Results</u> See Attached	<u>Units</u>	<u>MRL</u>	<u>Method</u>	<u>DF</u>	<u>Analyst</u>	<u>Analyzed</u>	<u>I/V</u>	<u>F/V</u>
Client Sample ID: HW-23 Date Sampled: 06/20/17 13:10				ESS Laborator Sample Matrix			33-03		
<u>Analyte</u> PFOS	<u>Results</u> See Attached	<u>Units</u>	<u>MRL</u>	<u>Method</u>	<u>DF</u>	<u>Analyst</u>	<u>Analyzed</u>	<u>I/V</u>	<u>F/V</u>
Client Sample ID: HW-19D Date Sampled: 06/20/17 13:35				ESS Laborator Sample Matrix			33-04		
<u>Analyte</u> PFOS	<u>Results</u> See Attached	<u>Units</u>	<u>MRL</u>	<u>Method</u>	<u>DF</u>	<u>Analyst</u>	<u>Analyzed</u>	<u>I/V</u>	<u>F/V</u>

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4

ESS Laboratory Work Order: 1706533

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4

ESS Laboratory Work Order: 1706533

Notes and Definitions

- Z-08 See Attached
- ND Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- MDL Method Detection Limit
- MRL Method Reporting Limit
- LOD Limit of Detection
- LOQ Limit of Quantitation
- DL Detection Limit
- I/V Initial Volume
- F/V Final Volume
- § Subcontracted analysis; see attached report
- 1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.
- 2 Range result excludes concentrations of target analytes eluting in that range.
- 3 Range result excludes the concentration of the C9-C10 aromatic range.
- Avg Results reported as a mathematical average.
- NR No Recovery
- [CALC] Calculated Analyte
- SUB Subcontracted analysis; see attached report
- RL Reporting Limit
- EDL Estimated Detection Limit

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4

ESS Laboratory Work Order: 1706533

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories/pdf/OutofStateCommercialLaboratories.pdf

> Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

> > Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

Your P.O. #: B02623 Your Project #: 1706533 Your C.O.C. #: 1706533

Attention:Shawn Morrell

ESS Laboratory 185 Frances Ave Cranston, RI USA 02910

> Report Date: 2017/07/17 Report #: R4601135 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B7D5769 Received: 2017/06/28, 14:30

Sample Matrix: Water # Samples Received: 4

	Date Date	
Analyses	Quantity Extracted Analyzed Laboratory Method Refere	ence
PFOS and PFOA in water by SPE/LCMS (1)	4 2017/07/04 2017/07/06 CAM SOP-00894 EPA 53	37 m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Per- and polyfluoroalkyl substances (PFAS) identified as surrogates on the certificate of analysis represent the extracted internal standard.

- U = Undetected at the limit of quantitation.
- J = Estimated concentration between the EDL & RDL.
- B = Blank Contamination.
- Q = One or more quality control criteria failed.
- E = Analyte concentration exceeds the maximum concentration level.
- K = Estimated maximum possible concentration due to ion abundance ratio failure.

Your P.O. #: B02623 Your Project #: 1706533 Your C.O.C. #: 1706533

Attention:Shawn Morrell

ESS Laboratory 185 Frances Ave Cranston, RI USA 02910

> Report Date: 2017/07/17 Report #: R4601135 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B7D5769 Received: 2017/06/28, 14:30

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Stephanie Pollen, Project Manager Email: SPollen@maxxam.ca Phone# (905) 817-5700

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

ESS Laboratory Client Project #: 1706533 Your P.O. #: B02623

RESULTS OF ANALYSES OF WATER

Maxxam ID		EQO625	EQO626		EQO627	EQ0628			
Sampling Date		2017/06/20	2017/06/20		2017/06/20	2017/06/20			
		08:15	11:50		13:10	13:35			
COC Number		1706533	1706533		1706533	1706533			
	UNITS	1706533-01	1706533-02	QC Batch	1706533-03	1706533-04	RDL	MDL	QC Batch
Miscellaneous Parameters									
6:2 Fluorotelomer sulfonate	ug/L	0.0032 U	0.0032 U	5056109	0.0032 U	0.0032 U	0.020	0.0032	5056109
8:2 Fluorotelomer sulfonate	ug/L	0.0036 U	0.0036 U	5056109	0.0036 U	0.0036 U	0.020	0.0036	5056109
Perfluorobutane Sulfonate (PFBS)	ug/L	0.0048 U	0.020	5056109	0.0051 J	0.0081 J	0.020	0.0048	5056109
Perfluorobutanoic acid	ug/L	0.0043 U	0.0088 J	5056109	0.0043 U	0.0043 U	0.020	0.0043	5056109
Perfluorodecane Sulfonate	ug/L	0.0046 U	0.0046 U	5056109	0.0046 U	0.0046 U	0.020	0.0046	5056109
Perfluorodecanoic Acid (PFDA)	ug/L	0.0040 U	0.0040 U	5056109	0.0040 U	0.0040 U	0.020	0.0040	5056109
Perfluorododecanoic Acid (PFDoA)	ug/L	0.0028 U	0.0028 U	5067867	0.0028 U	0.0028 U	0.020	0.0028	5056109
Perfluoroheptanoic Acid (PFHpA)	ug/L	0.0033 U	0.0042 J	5056109	0.0045 J	0.0052 J	0.020	0.0033	5056109
Perfluorohexane Sulfonate (PFHxS)	ug/L	0.0034 U	0.065	5056109	0.021	0.046	0.020	0.0034	5056109
Perfluorohexanoic Acid (PFHxA)	ug/L	0.0070 J	0.030	5056109	0.015 J	0.017 J	0.020	0.0029	5056109
Perfluoro-n-Octanoic Acid (PFOA)	ug/L	0.0046 U	0.022	5056109	0.0046 U	0.017 J	0.020	0.0046	5056109
Perfluorononanoic Acid (PFNA)	ug/L	0.0043 J	0.0057 J	5056109	0.0038 U	0.0065 J	0.020	0.0038	5056109
Perfluorooctane Sulfonamide (PFOSA)	ug/L	0.0036 U	0.0036 U	5067867	0.0036 U	0.0036 U	0.020	0.0036	5056109
Perfluorooctane Sulfonate (PFOS)	ug/L	0.0026 U	0.24	5056109	0.0079 J	0.061	0.020	0.0026	5056109
Perfluoropentanoic Acid (PFPeA)	ug/L	0.0061 J	0.029	5056109	0.021	0.015 J	0.020	0.0027	5056109
Perfluorotetradecanoic Acid	ug/L	0.0038 U	0.0038 U	5067867	0.0038 U	0.0038 U	0.020	0.0038	5067867
Perfluorotridecanoic Acid	ug/L	0.0033 U	0.0033 U	5067867	0.0033 U	0.0033 U	0.020	0.0033	5067867
Perfluoroundecanoic Acid (PFUnA)	ug/L	0.0043 U	0.0043 U	5056109	0.0043 U	0.0043 U	0.020	0.0043	5056109
Surrogate Recovery (%)									
13C2-6:2 Fluorotelomer sulfonate	%	64	72	5056109	91	78	N/A	N/A	5056109
13C2-8:2 Fluorotelomer sulfonate	%	62	71	5056109	71	73	N/A	N/A	5056109
13C2-Perfluorodecanoic acid	%	63	55	5056109	61	67	N/A	N/A	5056109
13C2-Perfluorododecanoic acid	%	67	48 (1)	5067867	50	59	N/A	N/A	5056109
13C2-Perfluorohexanoic acid	%	70	77	5056109	66	75	N/A	N/A	5056109
13C2-perfluorotetradecanoic acid	%	71	36 (1)	5067867	30 (1)	63	N/A	N/A	5067867
13C2-Perfluoroundecanoic acid	%	51	50	5056109	56	61	N/A	N/A	5056109
13C4-Perfluorobutanoic acid	%	74	75	5056109	75	77	N/A	N/A	5056109
13C4-Perfluoroheptanoic acid	%	66	80	5056109	84	83	N/A	N/A	5056109

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Extracted internal standard analyte recovery was below the defined lower control limit (LCL). Laboratory spiked water resulted in satisfactory recovery of the extracted internal standard analyte. When considered together, these QC data suggest that matrix interferences may be biasing the data low. Because quantitation is performed using isotope dilution techniques, any losses of the native compound that may occur during any of the sample preparation, extraction, cleanup or determinative steps will be mirrored by a similar loss of the labeled standard, and as such can be accounted for and corrected. Therefore, the quantification of these target compounds is not affected by the low extracted internal standard analyte recovery.

ESS Laboratory Client Project #: 1706533 Your P.O. #: B02623

RESULTS OF ANALYSES OF WATER

Maxxam ID		EQO625	EQ0626		EQ0627	EQO628			
Sampling Date		2017/06/20 08:15	2017/06/20 11:50		2017/06/20 13:10	2017/06/20 13:35			
COC Number		1706533	1706533		1706533	1706533			
	UNITS	1706533-01	1706533-02	QC Batch	1706533-03	1706533-04	RDL	MDL	QC Batch
13C4-Perfluorooctanesulfonate	%	69	76	5056109	75	75	N/A	N/A	5056109
13C4-Perfluorooctanoic acid	%	64	81	5056109	76	75	N/A	N/A	5056109
13C5-Perfluorononanoic acid	%	69	69	5056109	80	76	N/A	N/A	5056109
13C5-Perfluoropentanoic acid	%	71	84	5056109	77	76	N/A	N/A	5056109
13C8-Perfluorooctane Sulfonamide	%	73	64	5067867	65	52	N/A	N/A	5056109
1802-Perfluorohexanesulfonate	%	69	73	5056109	76	70	N/A	N/A	5056109
RDL = Reportable Detection Limit									
QC Batch = Quality Control Batch									
N/A = Not Applicable									

TEST SUMMARY

Maxxam ID: Sample ID:	EQO625 1706533-01					Collected: Shipped:	2017/06/20
Matrix:	Water					Received:	2017/06/28
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
PFOS and PFOA in water	by SPE/LCMS	LCMS	5056109	2017/07/04	2017/07/06	Daniela Zu	ipu
Maxxam ID: Sample ID: Matrix:	EQO626 1706533-02 Water					Collected: Shipped: Received:	2017/06/20 2017/06/28
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
PFOS and PFOA in water	by SPE/LCMS	LCMS	5056109	2017/07/04	2017/07/06	Daniela Zu	ipu
Maxxam ID: Sample ID:	EQO627 1706533-03					Collected: Shipped:	2017/06/20
Matrix:	Water					Received:	2017/06/28
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
PFOS and PFOA in water	by SPE/LCMS	LCMS	5056109	2017/07/04	2017/07/06	Daniela Zu	ipu
Maxxam ID: Sample ID:	EQO628 1706533-04					Collected: Shipped:	2017/06/20
Matrix:	Water					Received:	2017/06/28
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
PFOS and PFOA in water	by SPE/LCMS	LCMS	5056109	2017/07/04	2017/07/06	Daniela Zu	ipu

Maxxam Job #: B/D5/69 Report Date: 2017/07/17 ESS Laboratory Client Project #: 1706533 Your P.O. #: B02623

GENERAL COMMENTS

Sample EQO625, PFOS and PFOA in water by SPE/LCMS: Test repeated. Sample EQO626, PFOS and PFOA in water by SPE/LCMS: Test repeated. Sample EQO627, PFOS and PFOA in water by SPE/LCMS: Test repeated. Sample EQO628, PFOS and PFOA in water by SPE/LCMS: Test repeated.

Results relate only to the items tested.

ESS Laboratory Client Project #: 1706533 Your P.O. #: B02623

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
5056109	DZU	Spiked Blank	13C2-6:2 Fluorotelomer sulfonate	2017/07/06		110	%	50 - 150
			13C2-8:2 Fluorotelomer sulfonate	2017/07/06		86	%	50 - 150
			13C2-Perfluorodecanoic acid	2017/07/06		95	%	50 - 150
			13C2-Perfluorododecanoic acid	2017/07/06		88	%	50 - 150
			13C2-Perfluorohexanoic acid	2017/07/06		110	%	50 - 150
			13C2-Perfluoroundecanoic acid	2017/07/06		85	%	50 - 150
			13C4-Perfluorobutanoic acid	2017/07/06		95	%	50 - 150
			13C4-Perfluoroheptanoic acid	2017/07/06		93	%	50 - 150
			13C4-Perfluorooctanesulfonate	2017/07/06		95	%	50 - 150
			13C4-Perfluorooctanoic acid	2017/07/06		107	%	50 - 150
			13C5-Perfluorononanoic acid	2017/07/06		105	%	50 - 150
			13C5-Perfluoropentanoic acid	2017/07/06		102	%	50 - 150
			13C8-Perfluorooctane Sulfonamide	2017/07/06		81	%	50 - 150
			1802-Perfluorohexanesulfonate	2017/07/06		97	%	50 - 150
			6:2 Fluorotelomer sulfonate	2017/07/06		97	%	70 - 130
			8:2 Fluorotelomer sulfonate	2017/07/06		118	%	70 - 130
			Perfluorobutane Sulfonate (PFBS)	2017/07/06		98	%	70 - 130
			Perfluorobutanoic acid	2017/07/06		107	%	70 - 130
			Perfluorodecane Sulfonate	2017/07/06		85	%	70 - 130
			Perfluoroheptanoic Acid (PFHpA)	2017/07/06		109	%	70 - 130
			Perfluorohexane Sulfonate (PFHxS)	2017/07/06		99	%	70 - 130
			Perfluorohexanoic Acid (PFHxA)	2017/07/06		102	%	70 - 130
			Perfluorononanoic Acid (PFNA)	2017/07/06		88	%	70 - 130
			Perfluorooctane Sulfonamide (PFOSA)	2017/07/06		97	%	70 - 130
			Perfluoropentanoic Acid (PFPeA)	2017/07/06		88	%	70 - 130
			Perfluoroundecanoic Acid (PFUnA)	2017/07/06		96	%	70 - 130
			Perfluorodecanoic Acid (PFDA)	2017/07/06		107	%	70 - 130
			Perfluorododecanoic Acid (PFDoA)	2017/07/06		87	%	70 - 130
			Perfluoro-n-Octanoic Acid (PFOA)	2017/07/06		83	%	70 - 130
			Perfluorooctane Sulfonate (PFOS)	2017/07/06		105	%	70 - 130
5056109	DZU	Spiked Blank DUP	13C2-6:2 Fluorotelomer sulfonate	2017/07/06		83	%	50 - 150
			13C2-8:2 Fluorotelomer sulfonate	2017/07/06		92	%	50 - 150
			13C2-Perfluorodecanoic acid	2017/07/06		84	%	50 - 150
			13C2-Perfluorododecanoic acid	2017/07/06		71	%	50 - 150
			13C2-Perfluorohexanoic acid	2017/07/06		87	%	50 - 150
			13C2-Perfluoroundecanoic acid	2017/07/06		71	%	50 - 150
			13C4-Perfluorobutanoic acid	2017/07/06		91	%	50 - 150
			13C4-Perfluoroheptanoic acid	2017/07/06		90	%	50 - 150
			13C4-Perfluorooctanesulfonate	2017/07/06		82	%	50 - 150
			13C4-Perfluorooctanoic acid	2017/07/06		103	%	50 - 150
			13C5-Perfluorononanoic acid	2017/07/06		94	%	50 - 150
			13C5-Perfluoropentanoic acid	2017/07/06		93	%	50 - 150
			13C8-Perfluorooctane Sulfonamide	2017/07/06		69	%	50 - 150
			1802-Perfluorohexanesulfonate	2017/07/06		97	%	50 - 150
			6:2 Fluorotelomer sulfonate	2017/07/06		98	%	70 - 130
			8:2 Fluorotelomer sulfonate	2017/07/06		94	%	70 - 130
			Perfluorobutane Sulfonate (PFBS)	2017/07/06		85	%	70 - 130
			Perfluorobutanoic acid	2017/07/06		95	%	70 - 130
			Perfluorodecane Sulfonate	2017/07/06		77	%	70 - 130
			Perfluoroheptanoic Acid (PFHpA)	2017/07/06		105	%	70 - 130
1			Perfluorohexane Sulfonate (PFHxS)	2017/07/06		98	%	70 - 130
			Perfluorohexanoic Acid (PFHxA)	2017/07/06		109	%	70 - 130
			Perfluorononanoic Acid (PFNA)	2017/07/06		90	%	70 - 130

ESS Laboratory Client Project #: 1706533 Your P.O. #: B02623

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			Perfluoropentanoic Acid (PFPeA)	2017/07/06		88	%	70 - 130
			Perfluoroundecanoic Acid (PFUnA)	2017/07/06		108	%	70 - 130
			Perfluorodecanoic Acid (PFDA)	2017/07/06		113	%	70 - 130
			Perfluorododecanoic Acid (PFDoA)	2017/07/06		84	%	70 - 130
			Perfluoro-n-Octanoic Acid (PFOA)	2017/07/06		83	%	70 - 130
			Perfluorooctane Sulfonate (PFOS)	2017/07/06		99	%	70 - 130
5056109	DZU	RPD	6:2 Fluorotelomer sulfonate	2017/07/06	1.8		%	30
			8:2 Fluorotelomer sulfonate	2017/07/06	22		%	30
			Perfluorobutane Sulfonate (PFBS)	2017/07/06	14		%	30
			Perfluorobutanoic acid	2017/07/06	12		%	30
			Perfluorodecane Sulfonate	2017/07/06	9.9		%	30
			Perfluoroheptanoic Acid (PFHpA)	2017/07/06	3.4		%	30
			Perfluorohexane Sulfonate (PFHxS)	2017/07/06	0.61		%	30
			Perfluorohexanoic Acid (PFHxA)	2017/07/06	6.6		%	30
			Perfluorononanoic Acid (PFNA)	2017/07/06	2.3		%	30
			Perfluorooctane Sulfonamide (PFOSA)	2017/07/06	3.1		%	30
			Perfluoropentanoic Acid (PFPeA)	2017/07/06	0.23		%	30
			Perfluoroundecanoic Acid (PFUnA)	2017/07/06	11		%	30
			Perfluorodecanoic Acid (PFDA)	2017/07/06	5.5		%	30
			Perfluorododecanoic Acid (PFDoA)	2017/07/06	3.0		%	30
			Perfluoro-n-Octanoic Acid (PFOA)	2017/07/06	0.24		%	30
			Perfluorooctane Sulfonate (PFOS)	2017/07/06	5.5		%	30
5056109	DZU	Method Blank	13C2-6:2 Fluorotelomer sulfonate	2017/07/06		96	%	50 - 150
			13C2-8:2 Fluorotelomer sulfonate	2017/07/06		103	%	50 - 150
			13C2-Perfluorodecanoic acid	2017/07/06		78	%	50 - 150
			13C2-Perfluorododecanoic acid	2017/07/06		69	%	50 - 150
			13C2-Perfluorohexanoic acid	2017/07/06		103	%	50 - 150
			13C2-Perfluoroundecanoic acid	2017/07/06		74	%	50 - 150
			13C4-Perfluorobutanoic acid	2017/07/06		96	%	50 - 150
			13C4-Perfluoroheptanoic acid	2017/07/06		102	%	50 - 150
			13C4-Perfluorooctanesulfonate	2017/07/06		92	%	50 - 150
			13C4-Perfluorooctanoic acid	2017/07/06		103	%	50 - 150
			13C5-Perfluorononanoic acid	2017/07/06		102	%	50 - 150
			13C5-Perfluoropentanoic acid	2017/07/06		107	%	50 - 150
			13C8-Perfluorooctane Sulfonamide	2017/07/06		62	%	50 - 150
			1802-Perfluorohexanesulfonate	2017/07/06		100	%	50 - 150
			6:2 Fluorotelomer sulfonate	2017/07/06	0.0032 U, MDL=0.0032		ug/L	
			8:2 Fluorotelomer sulfonate	2017/07/06	0.0036 U, MDL=0.0036		ug/L	
			Perfluorobutane Sulfonate (PFBS)	2017/07/06	0.0048 U, MDL=0.0048		ug/L	
			Perfluorobutanoic acid	2017/07/06	0.0043 U, MDL=0.0043		ug/L	
			Perfluorodecane Sulfonate	2017/07/06	0.0046 U, MDL=0.0046		ug/L	
			Perfluoroheptanoic Acid (PFHpA)	2017/07/06	0.0033 U, MDL=0.0033		ug/L	
			Perfluorohexane Sulfonate (PFHxS)	2017/07/06	0.0034 U, MDL=0.0034		ug/L	
			Perfluorohexanoic Acid (PFHxA)	2017/07/06	0.0029 U, MDL=0.0029		ug/L	
			Perfluorononanoic Acid (PFNA)	2017/07/06	0.0038 U, MDL=0.0038		ug/L	

ESS Laboratory Client Project #: 1706533 Your P.O. #: B02623

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limit
Duten	mitt	de Type	Perfluorooctane Sulfonamide (PFOSA)	2017/07/06	0.0036 U,	Ju necovery	ug/L	QC LINIT
				- ,-,	MDL=0.0036		- 0,	
			Perfluoropentanoic Acid (PFPeA)	2017/07/06	0.0027 U,		ug/L	
					MDL=0.0027			
			Perfluoroundecanoic Acid (PFUnA)	2017/07/06	0.0043 U,		ug/L	
					MDL=0.0043			
			Perfluorodecanoic Acid (PFDA)	2017/07/06	0.0040 U,		ug/L	
					MDL=0.0040			
			Perfluorododecanoic Acid (PFDoA)	2017/07/06	0.0028 U,		ug/L	
					MDL=0.0028			
			Perfluoro-n-Octanoic Acid (PFOA)	2017/07/06	0.0046 U,		ug/L	
					MDL=0.0046			
			Perfluorooctane Sulfonate (PFOS)	2017/07/06	0.0026 U,		ug/L	
					MDL=0.0026			
5067867	DZU	Spiked Blank	13C2-Perfluorododecanoic acid	2017/07/12		66	%	50 - 15
			13C2-perfluorotetradecanoic acid	2017/07/12		72	%	50 - 15
			13C8-Perfluorooctane Sulfonamide	2017/07/12		79	%	50 - 15
			Perfluorooctane Sulfonamide (PFOSA)	2017/07/12		101	%	70 - 13
			Perfluorotetradecanoic Acid	2017/07/12		96	%	70 - 13
			Perfluorotridecanoic Acid	2017/07/12		93	%	70 - 13
			Perfluorododecanoic Acid (PFDoA)	2017/07/12		108	%	70 - 13
5067867	DZU	Spiked Blank DUP	13C2-Perfluorododecanoic acid	2017/07/12		55	%	50 - 15
			13C2-perfluorotetradecanoic acid	2017/07/12		54	%	50 - 15
			13C8-Perfluorooctane Sulfonamide	2017/07/12		65	%	50 - 15
			Perfluorooctane Sulfonamide (PFOSA)	2017/07/12		110	%	70 - 13
			Perfluorotetradecanoic Acid	2017/07/12		119	%	70 - 13
			Perfluorotridecanoic Acid	2017/07/12		113	%	70 - 13
	670		Perfluorododecanoic Acid (PFDoA)	2017/07/12		102	%	70 - 13
5067867	DZU	RPD	Perfluorooctane Sulfonamide (PFOSA)	2017/07/12	8.9		%	30
			Perfluorotetradecanoic Acid	2017/07/12	22		%	30
			Perfluorotridecanoic Acid	2017/07/12	20		%	30 30
007007	0711	Mathed Diauly	Perfluorododecanoic Acid (PFDoA)	2017/07/12	6.3	F 4	%	
5067867	DZU	Method Blank	13C2-Perfluorododecanoic acid	2017/07/12		54	%	50 - 15
			13C2-perfluorotetradecanoic acid	2017/07/12		63	% %	50 - 15
			13C8-Perfluorooctane Sulfonamide	2017/07/12	0.0026.11	68		50 - 15
			Perfluorooctane Sulfonamide (PFOSA)	2017/07/12	0.0036 U, MDL=0.0036		ug/L	
			Dorfluorototradocanaio Acid	2017/07/12				
			Perfluorotetradecanoic Acid	2017/07/12	0.0038 U, MDL=0.0038		ug/L	
			Dorfluorotridocancia Asid	2017/07/12			uc/1	
			Perfluorotridecanoic Acid	2017/07/12	0.0033 U, MDL=0.0033		ug/L	
			Parfluaradadacapaic Acid (PEDaA)	2017/07/12			ug/I	
			Perfluorododecanoic Acid (PFDoA)	2017/07/12	0.0028 U, MDL=0.0028		ug/L	

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

ESS Laboratory Client Project #: 1706533 Your P.O. #: B02623

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

1

Adam Robinson, Supervisor, LC/MS/MS

Colm McNamara, Senior Analyst, Liquid Chromatography

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

ESS La	aborato	nv			C	HAIN OF	CUS	STOD	Y	ESS Lab	#	1	201	10	22		
		ngineering, Inc.		Turn Tin	the second second	Standard	Other	100		1							
						RI CT NH N		E Other			Repo	rting I	imits -	. <u> </u>	1.1-	1	- 1
		Cranston, RI 0: Fax (401) 461-4		And in case of the local division of the loc		the following:(plea							Enerciater -	-	1	0	7
www.esslat			1100			JSACE CT D				E	lectoni	ic Deliv	erables	Exce	Acce	ess PDF	
Co. Name	Lay un	men an	NUP	Project #	127	Project Name	-C1	nia # i	1		5						
Contact Person	352 BE	in		Address O	iv nit	6A-				ysis	- hyo						
SAN	Duich		State MA	0		Zip D'256	3	PO #		Analysis	ALC						
Tel. SUS	833 66	00	Fax. 508 4	333815	υ	email:" becon	aphors	leywith	enco		S	SO					
ESS Lab ID	Date	Collection Time	Grab -G Composite-C	Matrix	Sa	ample ID	Pres Code	# of Containers	Type of Container	Vol of Container	PLA	2 C					
	6/20/7	1030	ú	5	ARFF	BLDG 1	NP	l	9	250	4			T			
		1035	9	5	MRFF	BLOG Z	NT	1	9	250	p						
1		03.5	6	SW	KMAN	- SW	1	2	P	12501		20					
2		1150	4	lin	the .	-1		2	P	1:25		X					
3		1310	9	an	Hw-	-23		2	P	125		X					
4		1335	ĥ	hn	HW-	190	0	2	P	125		X					
			• • •														
Container Type: P-I	Poly G-Glass AG	-Amber Glass S-Sterile	V-VOA		Matrix: S-Soi	I SD-Solid D-Sludge V	WW-Wastew	ater GW-Grour	ndwater SW-S	urface Water I	OW-Dri	nking V	ater O-C	V-W lic	/ipes F-Fil	iter	
Cooler Pres	sent	Yes	No	Internal L	Jse Only	Preservation Code:	(1-NP)2-H	HCI, 3-H2SO4	, 4-HNO3, 5-	NaOH, 6-Me	OH, 7-	Asorbi	c Acid, t	8-ZnAc	t, 9	_	
		No NA		[-] Picku	D	Sampled by :							,				
Cooler Tem	perature: _	2-3110	m	[] Techr	ician	Comments:					/	70	1,	1			
Relinquished by:	ignature, Date & T	Time)	Received by: (Sign	ature, Date & T	i has In		Relinquishe	d by: (Signature		1150	Receiv	# Pyil	signatur	Date 8	& Tine)	5	2D
Relinquished by: (S	Signature, Date & T		Received by: (Sign:	ature, Date & T	01	1530 c	Relinquistre	d by: (Signature	, Date & Time)	10/1	Receiv	ed by: (Signature	e, Date 8	ATime)	11	507
By circling MA-M	CP. client acknowle	edges samples were			Please fax to	the laboratory all	changes	to Chain of	Custody		1 (W)	hite) I	ab Co	nv.			
	dance with MADE												Client I		ot		

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Jesse Bean Horsley & Witten 90 Route 6A Sandwich, MA 02563

RE: Barn. On-Call #4 (17027) ESS Laboratory Work Order Number: 1706532

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director

Analytical Summary

REVIEWED By ESS Laboratory at 11:50 am, Jul 20, 2017

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

Subcontracted Analyses Maxxam Analytics - Cheektowaga, NY

PFOA

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4

ESS Laboratory Work Order: 1706532

SAMPLE RECEIPT

The following samples were received on June 20, 2017 for the analyses specified on the enclosed Chain of Custody Record.

Lab Number	Sample Name	Matrix	Analysis
1706532-01	DL-1	Soil	§
1706532-02	DL-2	Soil	§
1706532-03	DL-3	Soil	§
1706532-04	DL-4	Soil	§
1706532-05	DL-5	Soil	§
1706532-06	DL-6	Soil	§
1706532-07	DL-7	Soil	§
1706532-08	DL-8-2'	Soil	§
1706532-09	DL-9	Soil	§
1706532-10	DL-10	Soil	§
1706532-11	ARFF BLDG 1	Soil	§
1706532-12	ARFF BLDG 2	Soil	§

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4

ESS Laboratory Work Order: 1706532

PROJECT NARRATIVE

No unusual observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4

Analytical Methods

ESS Laboratory Work Order: 1706532

CURRENT SW-846 METHODOLOGY VERSIONS

Prep Methods

1010A - Flashpoint 6010C - ICP 6020A - ICP MS 7010 - Graphite Furnace 7196A - Hexavalent Chromium 7470A - Aqueous Mercury 7471B - Solid Mercury 8011 - EDB/DBCP/TCP 8015C - GRO/DRO 8081B - Pesticides 8082A - PCB 8100M - TPH 8151A - Herbicides 8260B - VOA 8270D - SVOA 8270D SIM - SVOA Low Level 9014 - Cyanide 9038 - Sulfate 9040C - Aqueous pH 9045D - Solid pH (Corrosivity) 9050A - Specific Conductance 9056A - Anions (IC) 9060A - TOC 9095B - Paint Filter MADEP 04-1.1 - EPH / VPH

3005A - Aqueous ICP Digestion
3020A - Aqueous Graphite Furnace / ICP MS Digestion
3050B - Solid ICP / Graphite Furnace / ICP MS Digestion
3060A - Solid Hexavalent Chromium Digestion
3510C - Separatory Funnel Extraction
3520C - Liquid / Liquid Extraction
3540C - Manual Soxhlet Extraction
3541 - Automated Soxhlet Extraction
3546 - Microwave Extraction
3580A - Waste Dilution
5030B - Aqueous Purge and Trap
5030C - Aqueous Purge and Trap
5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4

Client Sample ID: DL-1

Date Sampled: 06/20/17 09:00

ESS Laboratory Work Order: 1706532

Subcontracted Analysis

ESS Laboratory Sample ID: 1706532-01 Sample Matrix: Soil

<u>Analyte</u> PFOA	See Attached	<u>MRL</u>	<u>Method</u>	<u>DF</u>	<u>Analyst</u>	<u>Analyzed</u>	<u>I/V</u>	<u>F/V</u>	
Client Sample ID: DL-2 Date Sampled: 06/20/17 09:15				ESS Laborator Sample Matrix	-	e ID: 170653	2-02		
<u>Analyte</u> PFOA	<u>Results</u> See Attached	<u>Units</u>	<u>MRL</u>	<u>Method</u>	<u>DF</u>	<u>Analyst</u>	<u>Analyzed</u>	<u>I/V</u>	<u>F/V</u>
Client Sample ID: DL-3 Date Sampled: 06/20/17 09:30	0/17 09:30 Sample Mat		ESS Laborator Sample Matrix		e ID: 170653	22-03			
<u>Analyte</u> PFOA	<u>Results</u> See Attached	<u>Units</u>	<u>MRL</u>	<u>Method</u>	<u>DF</u>	<u>Analyst</u>	<u>Analyzed</u>	<u>I/V</u>	<u>F/V</u>
Client Sample ID: DL-4 Date Sampled: 06/20/17 09:45				ESS Laboratory Sample Matrix		e ID: 170653	52-04		
<u>Analyte</u> PFOA	<u>Results</u> See Attached	<u>Units</u>	<u>MRL</u>	<u>Method</u>	<u>DF</u>	<u>Analyst</u>	<u>Analyzed</u>	<u>I/V</u>	<u>F/V</u>
Client Sample ID: DL-5 Date Sampled: 06/20/17 09:45				ESS Laboratory Sample Matrix		e ID: 170653	92-05		
<u>Analyte</u> PFOA	<u>Results</u> See Attached	<u>Units</u>	<u>MRL</u>	<u>Method</u>	<u>DF</u>	<u>Analyst</u>	<u>Analyzed</u>	<u>I/V</u>	<u>F/V</u>

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4

Client Sample ID: DL-6

Date Sampled: 06/20/17 09:50

ESS Laboratory Work Order: 1706532

Subcontracted Analysis

ESS Laboratory Sample ID: 1706532-06 Sample Matrix: Soil

<u>Analyte</u> PFOA	OA See Attached	<u>Units</u>	<u>MRL</u>	<u>Method</u>	<u>DF</u>	<u>Analyst</u>	<u>Analyzed</u>	<u>I/V</u>	<u>F/V</u>
Client Sample ID: DL-7 Date Sampled: 06/20/17 10:00				ESS Laboratory Sample Matrix:		e ID: 170653	2-07		
<u>Analyte</u> PFOA	<u>Results</u> See Attached	<u>Units</u>	<u>MRL</u>	<u>Method</u>	<u>DF</u>	<u>Analyst</u>	<u>Analyzed</u>	<u>I/V</u>	<u>F/V</u>
Client Sample ID: DL-8-2' Date Sampled: 06/20/17 10:05				ESS Laboratory Sample Matrix:		e ID: 170653	32-08		
<u>Analyte</u> PFOA	<u>Results</u> See Attached	<u>Units</u>	<u>MRL</u>	<u>Method</u>	<u>DF</u>	<u>Analyst</u>	<u>Analyzed</u>	<u>I/V</u>	<u>F/V</u>
Client Sample ID: DL-9 Date Sampled: 06/20/17 10:15				ESS Laboratory Sample Matrix:	-	e ID: 170653	32-09		
<u>Analyte</u> PFOA	<u>Results</u> See Attached	<u>Units</u>	<u>MRL</u>	<u>Method</u>	<u>DF</u>	<u>Analyst</u>	<u>Analyzed</u>	<u>I/V</u>	<u>F/V</u>
Client Sample ID: DL-10 Date Sampled: 06/20/17 10:20				ESS Laboratory Sample Matrix:	-	e ID: 170653	32-10		
<u>Analvte</u> PFOA	<u>Results</u> <u>Units</u> <u>MRL</u> <u>Method</u> See Attached		<u>Method</u>	<u>DF</u>	<u>Analyst</u>	<u>Analyzed</u>	<u>I/V</u>	<u>F/V</u>	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4

ESS Laboratory Work Order: 1706532

Subcontracted Analysis

Client Sample ID: ARFF BLDG 1 Date Sampled: 06/20/17 10:30 ESS Laboratory Sample ID: 1706532-11 Sample Matrix: Soil

<u>Analyte</u> PFOA	<u>Results</u> See Attached	<u>Units</u>	<u>MRL</u>	<u>Method</u>	<u>DF</u>	<u>Analyst</u>	<u>Analyzed</u>	<u>I/V</u> <u>F/V</u>
Client Sample ID: ARFF BLDG 2 Date Sampled: 06/20/17 10:35				ESS Laborator Sample Matrix		e ID: 170653	32-12	
<u>Analyte</u> PFOA	<u>Results</u> See Attached	<u>Units</u>	<u>MRL</u>	Method	<u>DF</u>	<u>Analyst</u>	Analyzed	<u>I/V</u> <u>F/V</u>

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4

ESS Laboratory Work Order: 1706532

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4

ESS Laboratory Work Order: 1706532

Notes and Definitions

- Z-08 See Attached
- ND Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- MDL Method Detection Limit
- MRL Method Reporting Limit
- LOD Limit of Detection
- LOQ Limit of Quantitation
- DL Detection Limit
- I/V Initial Volume
- F/V Final Volume
- § Subcontracted analysis; see attached report
- 1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.
- 2 Range result excludes concentrations of target analytes eluting in that range.
- 3 Range result excludes the concentration of the C9-C10 aromatic range.
- Avg Results reported as a mathematical average.
- NR No Recovery
- [CALC] Calculated Analyte
- SUB Subcontracted analysis; see attached report
- RL Reporting Limit
- EDL Estimated Detection Limit

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4

ESS Laboratory Work Order: 1706532

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories/pdf/OutofStateCommercialLaboratories.pdf

> Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

> > Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

Your P.O. #: B02623 Your Project #: 1706532 Your C.O.C. #: 1706532

Attention:Shawn Morrell

ESS Laboratory 185 Frances Ave Cranston, RI USA 02910

> Report Date: 2017/07/19 Report #: R4604701 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B7D5743 Received: 2017/06/28, 14:30

Sample Matrix: Soil # Samples Received: 12

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Moisture	12	N/A	2017/06/30	CAM SOP-00445	Carter 2nd ed 51.2 m
PFOS and PFOA in soil by SPE/LCMS (1)	12	2017/07/04	2017/07/10	CAM SOP-00894	EPA537 m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Per- and polyfluoroalkyl substances (PFAS) identified as surrogates on the certificate of analysis represent the extracted internal standard.

U = Undetected at the limit of quantitation.

J = Estimated concentration between the EDL & RDL.

B = Blank Contamination.

Q = One or more quality control criteria failed.

E = Analyte concentration exceeds the maximum concentration level.

K = Estimated maximum possible concentration due to ion abundance ratio failure.

Your P.O. #: B02623 Your Project #: 1706532 Your C.O.C. #: 1706532

Attention:Shawn Morrell

ESS Laboratory 185 Frances Ave Cranston, RI USA 02910

> Report Date: 2017/07/19 Report #: R4604701 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B7D5743 Received: 2017/06/28, 14:30

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Stephanie Pollen, Project Manager Email: SPollen@maxxam.ca Phone# (905) 817-5700

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RESULTS OF ANALYSES OF SOIL

Maxxam ID		EQO499	EQO500				EQ0501	EQ0501			
Sampling Date		2017/06/20	2017/06/20				2017/06/20	2017/06/20			
		09:00	09:15				09:30	09:30		<u> </u>	
COC Number		1706532	1706532				1706532	1706532		<u> </u>	
	UNITS	1706532-01	1706532-02	RDL	MDL	QC Batch	1706532-03	1706532-03 Lab-Dup	RDL	MDL	QC Batch
Inorganics											
Moisture	%	3.1	9.1	1.0	0.50	5053470	6.2	N/A	1.0	0.50	5053470
Miscellaneous Parameters											
6:2 Fluorotelomer sulfonate	ug/kg	0.39 J	0.23 U	1.0	0.23	5056239	3.1	3.1	1.0	0.23	5056239
8:2 Fluorotelomer sulfonate	ug/kg	2.2	0.32 U	1.0	0.32	5056239	18	13 (1)	1.0	0.32	5056239
Perfluorobutane Sulfonate (PFBS)	ug/kg	0.17 U	0.17 U	1.0	0.17	5056239	0.17 U	0.17 U	1.0	0.17	5056239
Perfluorobutanoic acid	ug/kg	0.23 U	1.4	1.0	0.23	5056239	0.33 J	0.27 J	1.0	0.23	5056239
Perfluorodecane Sulfonate	ug/kg	0.65 J	0.23 U	1.0	0.23	5056239	0.74 J	0.73 J	1.0	0.23	5056239
Perfluorodecanoic Acid (PFDA)	ug/kg	0.63 J	0.13 U	1.0	0.13	5056239	1.4	1.3	1.0	0.13	5056239
Perfluorododecanoic Acid (PFDoA)	ug/kg	0.37 J	0.22 U	1.0	0.22	5056239	4.1	3.4	1.0	0.22	5056239
Perfluoroheptanoic Acid (PFHpA)	ug/kg	0.30 J	1.9	1.0	0.17	5056239	0.84 J	0.79 J	1.0	0.17	5056239
Perfluorohexane Sulfonate (PFHxS)	ug/kg	0.23 U	1.8	1.0	0.23	5056239	0.34 J	0.34 J	1.0	0.23	5056239
Perfluorohexanoic Acid (PFHxA)	ug/kg	0.19 U	2.2	1.0	0.19	5056239	0.38 J	0.29 J	1.0	0.19	5056239
Perfluoro-n-Octanoic Acid (PFOA)	ug/kg	0.26 U	<mark>1.6</mark>	1.0	0.26	5056239	<mark>0.80 J</mark>	0.63 J	1.0	0.26	5056239
Perfluorononanoic Acid (PFNA)	ug/kg	0.17 U	0.81 J	1.0	0.17	5056239	0.55 J	0.51 J	1.0	0.17	5056239
Perfluorooctane Sulfonamide (PFOSA)	ug/kg	0.26 U	0.26 U	1.0	0.26	5056239	3.5	2.7	1.0	0.26	5056239
Perfluorooctane Sulfonate (PFOS)	ug/kg	<mark>0.40 J</mark>	12	1.0	0.21	5056239	<mark>0.51 J</mark>	0.45 J	1.0	0.21	5056239
Perfluoropentanoic Acid (PFPeA)	ug/kg	0.18 U	2.7	1.0	0.18	5056239	1.4	0.97 J	1.0	0.18	5056239
Perfluorotetradecanoic Acid	ug/kg	0.11 U	0.11 U	1.0	0.11	5056239	0.97 J	0.87 J	1.0	0.11	5056239
Perfluorotridecanoic Acid	ug/kg	2.6	0.12 U	1.0	0.12	5056239	43 (2)	N/A	10	1.2	5071737
Perfluoroundecanoic Acid (PFUnA)	ug/kg	3.6	0.18 U	1.0	0.18	5056239	4.9	4.2	1.0	0.18	5056239
Surrogate Recovery (%)											
13C2-6:2 Fluorotelomer sulfonate	%	101	83	N/A	N/A	5056239	92	92	N/A	N/A	5056239
13C2-8:2 Fluorotelomer sulfonate	%	80	75	N/A	N/A	5056239	91	97	N/A	N/A	5056239
13C2-Perfluorodecanoic acid	%	80	64	N/A	N/A	5056239	68	63	N/A	N/A	5056239
13C2-Perfluorododecanoic acid	%	80	57	N/A	N/A	5056239	61	70	N/A	N/A	5056239
13C2-Perfluorohexanoic acid	%	88	76	N/A	N/A	5056239	79	81	N/A	N/A	5056239
13C2-perfluorotetradecanoic acid	%	72	54	N/A	N/A	5056239	55	58	N/A	N/A	5056239
13C2-Perfluoroundecanoic acid	%	79	68	N/A	N/A	5056239	70	71	N/A	N/A	5056239
13C4-Perfluorobutanoic acid	%	115	84	N/A	N/A	5056239	97	95	N/A	N/A	5056239
13C4-Perfluoroheptanoic acid	%	93	81	N/A	N/A	5056239	75	84	N/A	N/A	5056239
13C4-Perfluorooctanesulfonate	%	83	69	N/A	N/A	5056239	76	82	N/A	N/A	5056239

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) Duplicate results exceeded RPD acceptance criteria. This may be due to sample heterogeneity.

(2) Due to high concentration of the target analyte, sample required 10x dilution. Detection limit was adjusted accordingly.

RESULTS OF ANALYSES OF SOIL

Maxxam ID		EQO499	EQO500				EQ0501	EQ0501			
Sampling Date		2017/06/20 09:00	2017/06/20 09:15				2017/06/20 09:30	2017/06/20 09:30			
COC Number		1706532	1706532				1706532	1706532			
	UNITS	1706532-01	1706532-02	RDL	MDL	QC Batch	1706532-03	1706532-03 Lab-Dup	RDL	MDL	QC Batch
13C4-Perfluorooctanoic acid	%	89	83	N/A	N/A	5056239	81	87	N/A	N/A	5056239
13C5-Perfluorononanoic acid	%	86	71	N/A	N/A	5056239	78	74	N/A	N/A	5056239
13C5-Perfluoropentanoic acid	%	95	95	N/A	N/A	5056239	78	81	N/A	N/A	5056239
13C8-Perfluorooctane Sulfonamide	%	72	67	N/A	N/A	5056239	63	69	N/A	N/A	5056239
1802-Perfluorohexanesulfonate	%	106	76	N/A	N/A	5056239	72	76	N/A	N/A	5056239
RDL = Reportable Detection Limit QC Batch = Quality Control Batch Lab-Dup = Laboratory Initiated Duplicat N/A = Not Applicable	9										

RESULTS OF ANALYSES OF SOIL

Maxxam ID		EQ0502	EQO503		EQ0504			EQO505			
Sampling Date		2017/06/20	2017/06/20		2017/06/20			2017/06/20			
		09:45	09:45		09:50			10:00			
COC Number		1706532	1706532		1706532			1706532			
	UNITS	1706532-04	1706532-05	QC Batch	1706532-06	RDL	MDL	1706532-07	RDL	MDL	QC Batch
Inorganics											
Moisture	%	3.0	9.5	5053470	11	1.0	0.50	6.4	1.0	0.50	5053470
Miscellaneous Parameters											
6:2 Fluorotelomer sulfonate	ug/kg	0.24 J	0.23 U	5056239	2.0	1.0	0.23	290 (1)	10	2.3	5056239
8:2 Fluorotelomer sulfonate	ug/kg	0.62 J	0.32 U	5056239	0.32 U	1.0	0.32	87 (1)	10	3.2	5056239
Perfluorobutane Sulfonate (PFBS)	ug/kg	0.17 U	0.17 U	5056239	0.17 U	1.0	0.17	1.7 U (1)	10	1.7	5056239
Perfluorobutanoic acid	ug/kg	0.34 J	0.85 J	5056239	2.0	1.0	0.23	2.3 U (1)	10	2.3	5056239
Perfluorodecane Sulfonate	ug/kg	0.23 U	0.23 U	5056239	0.23 U	1.0	0.23	2.3 U (1)	10	2.3	5056239
Perfluorodecanoic Acid (PFDA)	ug/kg	1.3	0.13 U	5056239	0.13 U	1.0	0.13	1.3 U (1)	10	1.3	5056239
Perfluorododecanoic Acid (PFDoA)	ug/kg	0.22 U	0.22 U	5056239	0.22 U	1.0	0.22	2.2 U (1)	10	2.2	5056239
Perfluoroheptanoic Acid (PFHpA)	ug/kg	0.31 J	2.5	5056239	5.0	1.0	0.17	2.5 J (1)	10	1.7	5056239
Perfluorohexane Sulfonate (PFHxS)	ug/kg	0.23 U	0.49 J	5056239	0.23 U	1.0	0.23	2.3 U (1)	10	2.3	5056239
Perfluorohexanoic Acid (PFHxA)	ug/kg	0.19 U	1.2	5056239	4.8	1.0	0.19	2.3 J (1)	10	1.9	5056239
Perfluoro-n-Octanoic Acid (PFOA)	ug/kg	<mark>0.83 J</mark>	<mark>3.7</mark>	<mark>5056239</mark>	<mark>0.26 U</mark>	1.0	0.26	<mark>4.2 J (1)</mark>	10	2.6	5056239
Perfluorononanoic Acid (PFNA)	ug/kg	2.7	0.19 J	5056239	0.19 J	1.0	0.17	9.6 J (1)	10	1.7	5056239
Perfluorooctane Sulfonamide (PFOSA)	ug/kg	0.26 U	0.26 U	5056239	0.26 U	1.0	0.26	2.6 U (1)	10	2.6	5056239
Perfluorooctane Sulfonate (PFOS)	ug/kg	<mark>2.0</mark>	<mark>0.21 U</mark>	<mark>5056239</mark>	<mark>0.21 U</mark>	1.0	0.21	<mark>3.9 J (1)</mark>	10	2.1	5056239
Perfluoropentanoic Acid (PFPeA)	ug/kg	0.56 J	2.1	5056239	4.6	1.0	0.18	4.9 J (1)	10	1.8	5056239
Perfluorotetradecanoic Acid	ug/kg	0.11 U	0.11 U	5073733	0.11 U	1.0	0.11	1.1 U (1)	10	1.1	5056239
Perfluorotridecanoic Acid	ug/kg	0.12 U	0.12 U	5073733	0.12 U	1.0	0.12	1.2 U (1)	10	1.2	5056239
Perfluoroundecanoic Acid (PFUnA)	ug/kg	0.72 J	0.18 U	5056239	0.18 U	1.0	0.18	1.8 U (1)	10	1.8	5056239
Surrogate Recovery (%)											
13C2-6:2 Fluorotelomer sulfonate	%	119	80	5056239	94	N/A	N/A	86	N/A	N/A	5056239
13C2-8:2 Fluorotelomer sulfonate	%	89	63	5056239	100	N/A	N/A	79	N/A	N/A	5056239
13C2-Perfluorodecanoic acid	%	82	74	5056239	87	N/A	N/A	95	N/A	N/A	5056239
13C2-Perfluorododecanoic acid	%	77	71	5056239	71	N/A	N/A	72	N/A	N/A	5056239
13C2-Perfluorohexanoic acid	%	85	68	5056239	86	N/A	N/A	88	N/A	N/A	5056239
13C2-perfluorotetradecanoic acid	%	72	80	5073733	61	N/A	N/A	71	N/A	N/A	5056239
13C2-Perfluoroundecanoic acid	%	90	77	5056239	82	N/A	N/A	98	N/A	N/A	5056239
13C4-Perfluorobutanoic acid	%	106	77	5056239	94	N/A	N/A	106	N/A	N/A	5056239
13C4-Perfluoroheptanoic acid	%	87	70	5056239	83	N/A	N/A	82	N/A	N/A	5056239
13C4-Perfluorooctanesulfonate	%	87	62	5056239	81	N/A	N/A	87	N/A	N/A	5056239
13C4-Perfluorooctanoic acid	%	99	73	5056239	93	N/A	N/A	95	N/A	N/A	5056239

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Due to high concentrations of the target analytes, a reduced sample volume was extracted and analyzed. Detection limit was adjusted accordingly (10x).

RESULTS OF ANALYSES OF SOIL

Maxxam ID		EQ0502	EQO503		EQO504			EQO505			
Sampling Date		2017/06/20 09:45	2017/06/20 09:45		2017/06/20 09:50			2017/06/20 10:00			
COC Number		1706532	1706532		1706532			1706532			
	UNITS	1706532-04	1706532-05	QC Batch	1706532-06	RDL	MDL	1706532-07	RDL	MDL	QC Batch
13C5-Perfluorononanoic acid	%	84	61	5056239	84	N/A	N/A	72	N/A	N/A	5056239
13C5-Perfluoropentanoic acid	%	90	70	5056239	93	N/A	N/A	90	N/A	N/A	5056239
13C8-Perfluorooctane Sulfonamide	%	92	70	5056239	85	N/A	N/A	99	N/A	N/A	5056239
1802-Perfluorohexanesulfonate	%	95	81	5056239	79	N/A	N/A	86	N/A	N/A	5056239
RDL = Reportable Detection Limit											
QC Batch = Quality Control Batch											
N/A = Not Applicable											

RESULTS OF ANALYSES OF SOIL

Maxxam ID		EQO506			EQ0507	EQO508			
Sampling Date		2017/06/20			2017/06/20	2017/06/20			
		10:05			10:15	10:20			
COC Number		1706532			1706532	1706532			
	UNITS	1706532-08	RDL	MDL	1706532-09	1706532-10	RDL	MDL	QC Batch
Inorganics									
Moisture	%	3.5	1.0	0.50	10	11	1.0	0.50	5053470
Miscellaneous Parameters									
6:2 Fluorotelomer sulfonate	ug/kg	1600 (1)	100	23	0.23 U	0.23 U	1.0	0.23	5056239
8:2 Fluorotelomer sulfonate	ug/kg	28 (2)	10	3.2	0.32 U	0.32 U	1.0	0.32	5056239
Perfluorobutane Sulfonate (PFBS)	ug/kg	1.7 U (2)	10	1.7	0.17 U	0.17 U	1.0	0.17	5056239
Perfluorobutanoic acid	ug/kg	2.3 U (2)	10	2.3	1.1	1.2	1.0	0.23	5056239
Perfluorodecane Sulfonate	ug/kg	2.3 U (2)	10	2.3	0.23 U	0.23 U	1.0	0.23	5056239
Perfluorodecanoic Acid (PFDA)	ug/kg	1.3 U (2)	10	1.3	0.13 U	0.13 U	1.0	0.13	5056239
Perfluorododecanoic Acid (PFDoA)	ug/kg	2.2 U (2)	10	2.2	0.22 U	0.22 U	1.0	0.22	5056239
Perfluoroheptanoic Acid (PFHpA)	ug/kg	2.9 J (2)	10	1.7	0.66 J	1.3	1.0	0.17	5056239
Perfluorohexane Sulfonate (PFHxS)	ug/kg	2.3 U (2)	10	2.3	0.35 J	0.94 J	1.0	0.23	5056239
Perfluorohexanoic Acid (PFHxA)	ug/kg	8.2 J (2)	10	1.9	0.99 J	1.6	1.0	0.19	5056239
Perfluoro-n-Octanoic Acid (PFOA)	ug/kg	<mark>25 (2)</mark>	10	2.6	<mark>0.68 J</mark>	<mark>1.7</mark>	1.0	0.26	5056239
Perfluorononanoic Acid (PFNA)	ug/kg	46 (2)	10	1.7	0.22 J	0.17 U	1.0	0.17	5056239
Perfluorooctane Sulfonamide (PFOSA)	ug/kg	2.6 U (2)	10	2.6	0.26 U	0.26 U	1.0	0.26	5056239
Perfluorooctane Sulfonate (PFOS)	ug/kg	<mark>14 (2)</mark>	10	2.1	<mark>0.38 J</mark>	<mark>0.26 J</mark>	1.0	0.21	5056239
Perfluoropentanoic Acid (PFPeA)	ug/kg	3.1 J (2)	10	1.8	2.0	2.1	1.0	0.18	5056239
Perfluorotetradecanoic Acid	ug/kg	1.1 U (2)	10	1.1	0.11 U	0.11 U	1.0	0.11	5056239
Perfluorotridecanoic Acid	ug/kg	1.2 U (2)	10	1.2	0.12 U	0.12 U	1.0	0.12	5056239
Perfluoroundecanoic Acid (PFUnA)	ug/kg	1.8 U (2)	10	1.8	0.18 U	0.18 U	1.0	0.18	5056239
Surrogate Recovery (%)	•								
13C2-6:2 Fluorotelomer sulfonate	%	94	N/A	N/A	92	80	N/A	N/A	5056239
13C2-8:2 Fluorotelomer sulfonate	%	108	N/A	N/A	86	69	N/A	N/A	5056239
13C2-Perfluorodecanoic acid	%	104	N/A	N/A	72	67	N/A	N/A	5056239
13C2-Perfluorododecanoic acid	%	109	N/A	N/A	66	65	N/A	N/A	5056239
13C2-Perfluorohexanoic acid	%	112	N/A	N/A	87	73	N/A	N/A	5056239
13C2-perfluorotetradecanoic acid	%	100	N/A	N/A	60	66	N/A	N/A	5056239
13C2-Perfluoroundecanoic acid	%	118	N/A	N/A	77	80	N/A	N/A	5056239
13C4-Perfluorobutanoic acid	%	127	N/A	N/A	108	98	N/A	N/A	5056239
13C4-Perfluoroheptanoic acid	%	105	N/A	N/A	88	82	N/A	N/A	5056239
PDI - Reportable Detection Limit		•			•				•

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Due to high concentrations of the target analytes, a reduced sample volume was extracted and analyzed. Detection limit was adjusted accordingly (100x).

(2) Due to high concentrations of the target analytes, a reduced sample volume was extracted and analyzed. Detection limit was adjusted accordingly (10x).

RESULTS OF ANALYSES OF SOIL

Maxxam ID		EQ0506			EQ0507	EQO508			
Sampling Date		2017/06/20 10:05			2017/06/20 10:15	2017/06/20 10:20			
COC Number		1706532			1706532	1706532			
	UNITS	1706532-08	RDL	MDL	1706532-09	1706532-10	RDL	MDL	QC Batch
13C4-Perfluorooctanesulfonate	%	110	N/A	N/A	75	75	N/A	N/A	5056239
13C4-Perfluorooctanoic acid	%	107	N/A	N/A	89	85	N/A	N/A	5056239
13C5-Perfluorononanoic acid	%	113	N/A	N/A	84	74	N/A	N/A	5056239
13C5-Perfluoropentanoic acid	%	103	N/A	N/A	80	79	N/A	N/A	5056239
13C8-Perfluorooctane Sulfonamide	%	95	N/A	N/A	66	71	N/A	N/A	5056239
1802-Perfluorohexanesulfonate	%	114	N/A	N/A	72	74	N/A	N/A	5056239
RDL = Reportable Detection Limit									
QC Batch = Quality Control Batch									
N/A = Not Applicable									

RESULTS OF ANALYSES OF SOIL

Maxxam ID		EQO509				EQ0510			
Sampling Date		2017/06/20				2017/06/20			
		10:30				10:35			
COC Number		1706532				1706532			
	UNITS	1706532-11	RDL	MDL	QC Batch	1706532-12	RDL	MDL	QC Batch
Inorganics		-		-				-	
Moisture	%	7.9	1.0	0.50	5053470	7.3	1.0	0.50	5053470
Miscellaneous Parameters									
6:2 Fluorotelomer sulfonate	ug/kg	0.93 J	1.0	0.23	5056239	0.23 U	1.0	0.23	5056239
8:2 Fluorotelomer sulfonate	ug/kg	2.0	1.0	0.32	5056239	0.32 U	1.0	0.32	5056239
Perfluorobutane Sulfonate (PFBS)	ug/kg	0.17 U	1.0	0.17	5056239	0.17 U	1.0	0.17	5056239
Perfluorobutanoic acid	ug/kg	0.84 J	1.0	0.23	5056239	0.23 U	1.0	0.23	5056239
Perfluorodecane Sulfonate	ug/kg	0.23 U	1.0	0.23	5056239	0.23 U	1.0	0.23	5056239
Perfluorodecanoic Acid (PFDA)	ug/kg	4.4	1.0	0.13	5056239	0.13 U	1.0	0.13	5056239
Perfluorododecanoic Acid (PFDoA)	ug/kg	2.6	1.0	0.22	5056239	0.22 U	1.0	0.22	5056239
Perfluoroheptanoic Acid (PFHpA)	ug/kg	0.82 J	1.0	0.17	5056239	0.17 U	1.0	0.17	5056239
Perfluorohexane Sulfonate (PFHxS)	ug/kg	0.23 U	1.0	0.23	5056239	0.23 U	1.0	0.23	5056239
Perfluorohexanoic Acid (PFHxA)	ug/kg	0.61 J	1.0	0.19	5056239	0.19 U	1.0	0.19	5056239
Perfluoro-n-Octanoic Acid (PFOA)	ug/kg	<mark>0.75 J</mark>	1.0	0.26	5056239	<mark>0.26 U</mark>	1.0	0.26	5056239
Perfluorononanoic Acid (PFNA)	ug/kg	2.5	1.0	0.17	5056239	0.20 J	1.0	0.17	5056239
Perfluorooctane Sulfonamide (PFOSA)	ug/kg	0.26 U	1.0	0.26	5056239	0.26 U	1.0	0.26	5056239
Perfluorooctane Sulfonate (PFOS)	ug/kg	<mark>4.5</mark>	1.0	0.21	5056239	<mark>0.29 J</mark>	1.0	0.21	5056239
Perfluoropentanoic Acid (PFPeA)	ug/kg	1.5	1.0	0.18	5056239	0.25 J	1.0	0.18	5056239
Perfluorotetradecanoic Acid	ug/kg	0.61 J	1.0	0.11	5056239	0.11 U	1.0	0.11	5056239
Perfluorotridecanoic Acid	ug/kg	42	1.0	0.12	5071737	0.20 J	1.0	0.12	5056239
Perfluoroundecanoic Acid (PFUnA)	ug/kg	55 (1)	10	1.8	5071737	0.22 J	1.0	0.18	5056239
Surrogate Recovery (%)									
13C2-6:2 Fluorotelomer sulfonate	%	84	N/A	N/A	5056239	77	N/A	N/A	5056239
13C2-8:2 Fluorotelomer sulfonate	%	76	N/A	N/A	5056239	78	N/A	N/A	5056239
13C2-Perfluorodecanoic acid	%	57	N/A	N/A	5056239	74	N/A	N/A	5056239
13C2-Perfluorododecanoic acid	%	62	N/A	N/A	5056239	67	N/A	N/A	5056239
13C2-Perfluorohexanoic acid	%	67	N/A	N/A	5056239	76	N/A	N/A	5056239
13C2-perfluorotetradecanoic acid	%	53	N/A	N/A	5056239	60	N/A	N/A	5056239
13C2-Perfluoroundecanoic acid	%	90	N/A	N/A	5071737	72	N/A	N/A	5056239
13C4-Perfluorobutanoic acid	%	76	N/A	N/A	5056239	82	N/A	N/A	5056239
13C4-Perfluoroheptanoic acid	%	72	N/A	N/A	5056239	73	N/A	N/A	5056239
13C4-Perfluorooctanesulfonate	%	63	N/A	N/A	5056239	72	N/A	N/A	5056239
13C4-Perfluorooctanoic acid	%	68	N/A	N/A	5056239	82	N/A	N/A	5056239

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Due to high concentration of the target analyte, sample required 10x dilution. Detection limit was adjusted accordingly.

RESULTS OF ANALYSES OF SOIL

Maxxam ID		EQO509				EQ0510			
Sampling Date		2017/06/20				2017/06/20			
		10:30				10:35			
COC Number		1706532				1706532			
	UNITS	1706532-11	RDL	MDL	QC Batch	1706532-12	RDL	MDL	QC Batch
13C5-Perfluorononanoic acid	%	61	N/A	N/A	5056239	76	N/A	N/A	5056239
13C5-Perfluoropentanoic acid	%	86	N/A	N/A	5056239	77	N/A	N/A	5056239
13C8-Perfluorooctane Sulfonamide	%	60	N/A	N/A	5056239	63	N/A	N/A	5056239
1802-Perfluorohexanesulfonate	%	68	N/A	N/A	5056239	78	N/A	N/A	5056239
RDL = Reportable Detection Limit									
QC Batch = Quality Control Batch									
N/A = Not Applicable									

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	EQO499 1706532-01 Soil					Collected: Shipped: Received:	2017/06/20 2017/06/28
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	5053470	N/A	2017/06/30	Min Yang	
PFOS and PFOA in soil by	SPE/LCMS	LCMS	5056239	2017/07/04	2017/07/10	Daniela Zu	ри
Maxxam ID: Sample ID: Matrix:	EQO500 1706532-02 Soil					Collected: Shipped: Received:	2017/06/20 2017/06/28
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	5053470	N/A	2017/06/30	Min Yang	
PFOS and PFOA in soil by	SPE/LCMS	LCMS	5056239	2017/07/04	2017/07/10	Daniela Zu	pu
Maxxam ID: Sample ID: Matrix:	EQO501 1706532-03 Soil					Collected: Shipped: Received:	2017/06/20 2017/06/28
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	5053470	N/A	2017/06/30	Min Yang	
PFOS and PFOA in soil by	SPE/LCMS	LCMS	5056239	2017/07/04	2017/07/10	Daniela Zu	ри
Maxxam ID: Sample ID: Matrix:	EQO501 Dup 1706532-03 Soil					Collected: Shipped: Received:	2017/06/20 2017/06/28
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
PFOS and PFOA in soil by	SPE/LCMS	LCMS	5056239	2017/07/04	2017/07/10	Daniela Zu	ри
Maxxam ID: Sample ID: Matrix:	EQO502 1706532-04 Soil					Collected: Shipped: Received:	2017/06/20 2017/06/28
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	5053470	N/A	2017/06/30	Min Yang	
PFOS and PFOA in soil by	SPE/LCMS	LCMS	5056239	2017/07/04	2017/07/10	Daniela Zu	ри
Maxxam ID: Sample ID: Matrix:	EQO503 1706532-05 Soil					Collected: Shipped: Received:	2017/06/20 2017/06/28
Sample ID:	1706532-05	Instrumentation	Batch	Extracted	Date Analyzed	Shipped:	- ,, -
Sample ID: Matrix:	1706532-05	Instrumentation BAL	Batch 5053470	Extracted N/A	Date Analyzed 2017/06/30	Shipped: Received:	- ,, -

Page 11 of 19

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	EQO504 1706532-06 Soil					Collected: Shipped: Received:	2017/06/20 2017/06/28
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	5053470	N/A	2017/06/30	Min Yang	
PFOS and PFOA in soil by	SPE/LCMS	LCMS	5056239	2017/07/04	2017/07/10	Daniela Zu	pu
Maxxam ID: Sample ID: Matrix:	EQO505 1706532-07 Soil					Collected: Shipped: Received:	2017/06/20 2017/06/28
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	5053470	N/A	2017/06/30	Min Yang	
PFOS and PFOA in soil by	SPE/LCMS	LCMS	5056239	2017/07/04	2017/07/10	Daniela Zu	nu
Maxxam ID: Sample ID: Matrix:	EQO506 1706532-08 Soil					Collected: Shipped: Received:	2017/06/20 2017/06/28
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	- ,, -
Moisture		BAL	5053470	N/A	2017/06/30	Min Yang	
PFOS and PFOA in soil by	SPE/LCMS	LCMS	5056239	2017/07/04	2017/07/10	Daniela Zu	pu
Maxxam ID: Sample ID: Matrix:	EQO507 1706532-09 Soil					Collected: Shipped: Received:	2017/06/20 2017/06/28
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	5053470	N/A	2017/06/30	Min Yang	
PFOS and PFOA in soil by	SPE/LCMS	LCMS	5056239	2017/07/04	2017/07/10	Daniela Zu	ри
Maxxam ID: Sample ID: Matrix:	EQO508 1706532-10 Soil					Collected: Shipped: Received:	2017/06/20 2017/06/28
Sample ID:	1706532-10	Instrumentation	Batch	Extracted	Date Analyzed	Shipped:	
Sample ID: Matrix:	1706532-10	Instrumentation BAL	Batch 5053470	Extracted N/A	Date Analyzed 2017/06/30	Shipped: Received:	
Sample ID: Matrix: Test Description	1706532-10 Soil				-	Shipped: Received: Analyst	2017/06/28
Sample ID: Matrix: Test Description Moisture	1706532-10 Soil	BAL	5053470	N/A	2017/06/30	Shipped: Received: Analyst Min Yang	2017/06/28
Sample ID: Matrix: Test Description Moisture PFOS and PFOA in soil by Maxxam ID: Sample ID:	1706532-10 Soil SPE/LCMS EQO509 1706532-11	BAL	5053470	N/A	2017/06/30	Shipped: Received: Analyst Min Yang Daniela Zu Collected: Shipped:	2017/06/28
Sample ID: Matrix: Test Description Moisture PFOS and PFOA in soil by Maxxam ID: Sample ID: Matrix:	1706532-10 Soil SPE/LCMS EQO509 1706532-11	BAL LCMS	5053470 5056239	N/A 2017/07/04	2017/06/30 2017/07/10	Shipped: Received: Analyst Min Yang Daniela Zu Collected: Shipped: Received:	2017/06/28

PFOS and PFOA in soil by SPE/LCMS

ESS Laboratory Client Project #: 1706532 Your P.O. #: B02623

2017/07/10

Daniela Zupu

TEST SUMMARY

Sample	ID: EQO510 ID: 170653 trix: Soil					Shipped:	2017/06/20 2017/06/28
Test Description		Instrument	ation Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	5053470	N/A	2017/06/30	Min Yang	

5056239

2017/07/04

LCMS

ESS Laboratory Client Project #: 1706532 Your P.O. #: B02623

GENERAL COMMENTS

Sample EQ0501, PFOS and PFOA in soil by SPE/LCMS: Test repeated. Sample EQ0502, PFOS and PFOA in soil by SPE/LCMS: Test repeated. Sample EQ0503, PFOS and PFOA in soil by SPE/LCMS: Test repeated. Sample EQ0509, PFOS and PFOA in soil by SPE/LCMS: Test repeated.

Results relate only to the items tested.

ESS Laboratory Client Project #: 1706532 Your P.O. #: B02623

QUALITY ASSURANCE REPORT

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
5053470	NS3	RPD - Sample/Sample Dup	Moisture	2017/06/30	7.5		%	20
5056239	DZU	Matrix Spike(EQ0501)	13C2-6:2 Fluorotelomer sulfonate	2017/07/10		106	%	50 - 150
			13C2-8:2 Fluorotelomer sulfonate	2017/07/10		106	%	50 - 150
			13C2-Perfluorodecanoic acid	2017/07/10		91	%	50 - 150
			13C2-Perfluorododecanoic acid	2017/07/10		106	%	50 - 150
			13C2-Perfluorohexanoic acid	2017/07/10		96	%	50 - 150
			13C2-perfluorotetradecanoic acid	2017/07/10		81	%	50 - 150
			13C2-Perfluoroundecanoic acid	2017/07/10		99	%	50 - 150
			13C4-Perfluorobutanoic acid	2017/07/10		104	%	50 - 150
			13C4-Perfluoroheptanoic acid	2017/07/10		97	%	50 - 150
			13C4-Perfluorooctanesulfonate	2017/07/10		90	%	50 - 150
			13C4-Perfluorooctanoic acid	2017/07/10		104	%	50 - 150
			13C5-Perfluorononanoic acid	2017/07/10		91	%	50 - 150
			13C5-Perfluoropentanoic acid	2017/07/10		103	%	50 - 150
			13C8-Perfluorooctane Sulfonamide	2017/07/10		86	%	50 - 150
			1802-Perfluorohexanesulfonate	2017/07/10		104	%	50 - 150
			6:2 Fluorotelomer sulfonate	2017/07/10		106	%	70 - 130
			8:2 Fluorotelomer sulfonate	2017/07/10		73	%	70 - 130
			Perfluorobutane Sulfonate (PFBS)	2017/07/10		102	%	70 - 130
			Perfluorobutanoic acid	2017/07/10		105	%	70 - 130
			Perfluorodecane Sulfonate	2017/07/10		102	%	70 - 130
			Perfluorodecanoic Acid (PFDA)	2017/07/10		104	%	70 - 130
			Perfluorododecanoic Acid (PFDoA)	2017/07/10		91	%	70 - 130
			Perfluorononanoic Acid (PFNA)	2017/07/10		103	%	70 - 130
			Perfluorooctane Sulfonamide (PFOSA)	2017/07/10		111	%	70 - 130
			Perfluorotetradecanoic Acid	2017/07/10		95	%	70 - 130
			Perfluorotridecanoic Acid	2017/07/10		52 (1)	%	70 - 130
			Perfluoroundecanoic Acid (PFUnA)	2017/07/10		95	%	70 - 130
			Perfluoroheptanoic Acid (PFHpA)	2017/07/10		94	%	70 - 130
			Perfluorohexane Sulfonate (PFHxS)	2017/07/10		91	%	70 - 130
			Perfluorohexanoic Acid (PFHxA)	2017/07/10		99	%	70 - 130
			Perfluoro-n-Octanoic Acid (PFOA)	2017/07/10		102	%	70 - 130
			Perfluorooctane Sulfonate (PFOS)	2017/07/10		95	%	70 - 130
			Perfluoropentanoic Acid (PFPeA)	2017/07/10		101	%	70 - 130
5056239	DZU	Spiked Blank	13C2-6:2 Fluorotelomer sulfonate	2017/07/10		120	%	50 - 150
			13C2-8:2 Fluorotelomer sulfonate	2017/07/10		97	%	50 - 150
			13C2-Perfluorodecanoic acid	2017/07/10		91	%	50 - 150
			13C2-Perfluorododecanoic acid	2017/07/10		84	%	50 - 150
			13C2-Perfluorohexanoic acid	2017/07/10		96	%	50 - 150
			13C2-perfluorotetradecanoic acid	2017/07/10		83	%	50 - 150
			13C2-Perfluoroundecanoic acid	2017/07/10		84	%	50 - 150
			13C4-Perfluorobutanoic acid	2017/07/10		107	%	50 - 150
			13C4-Perfluoroheptanoic acid	2017/07/10		103	%	50 - 150
			13C4-Perfluorooctanesulfonate	2017/07/10		96	%	50 - 150
			13C4-Perfluorooctanoic acid	2017/07/10		101	%	50 - 150
			13C5-Perfluorononanoic acid	2017/07/10		97	%	50 - 150
			13C5-Perfluoropentanoic acid	2017/07/10		103	%	50 - 150
			13C8-Perfluorooctane Sulfonamide	2017/07/10		72	%	50 - 150
			1802-Perfluorohexanesulfonate	2017/07/10		102	%	50 - 150
			6:2 Fluorotelomer sulfonate	2017/07/10		106	%	70 - 130
			8:2 Fluorotelomer sulfonate	2017/07/10		98	%	70 - 130
			Perfluorobutane Sulfonate (PFBS)	2017/07/10		96	%	70 - 130
			Perfluorobutanoic acid	2017/07/10		87	%	70 - 130
			Perfluorodecane Sulfonate	2017/07/10		87	%	70 - 130

ESS Laboratory Client Project #: 1706532 Your P.O. #: B02623

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
		<i></i>	Perfluorodecanoic Acid (PFDA)	2017/07/10		90	%	70 - 130
			Perfluorododecanoic Acid (PFDoA)	2017/07/10		101	%	70 - 130
			Perfluorononanoic Acid (PFNA)	2017/07/10		94	%	70 - 130
			Perfluorooctane Sulfonamide (PFOSA)	2017/07/10		116	%	70 - 130
			Perfluorotetradecanoic Acid	2017/07/10		90	%	70 - 130
			Perfluorotridecanoic Acid	2017/07/10		83	%	70 - 130
			Perfluoroundecanoic Acid (PFUnA)	2017/07/10		104	%	70 - 130
			Perfluoroheptanoic Acid (PFHpA)	2017/07/10		88	%	70 - 130
			Perfluorohexane Sulfonate (PFHxS)	2017/07/10		96	%	70 - 130
			Perfluorohexanoic Acid (PFHxA)	2017/07/10		97	%	70 - 130
			Perfluoro-n-Octanoic Acid (PFOA)	2017/07/10		98	%	70 - 130
			Perfluorooctane Sulfonate (PFOS)	2017/07/10		98	%	70 - 130
			Perfluoropentanoic Acid (PFPeA)	2017/07/10		107	%	70 - 130
5056239	DZU	Method Blank	13C2-6:2 Fluorotelomer sulfonate	2017/07/10		104	%	50 - 150
			13C2-8:2 Fluorotelomer sulfonate	2017/07/10		83	%	50 - 150
			13C2-Perfluorodecanoic acid	2017/07/10		83	%	50 - 150
			13C2-Perfluorododecanoic acid	2017/07/10		80	%	50 - 150
			13C2-Perfluorohexanoic acid	2017/07/10		97	%	50 - 150
			13C2-perfluorotetradecanoic acid	2017/07/10		73	%	50 - 150
			13C2-Perfluoroundecanoic acid	2017/07/10		66	%	50 - 150
			13C4-Perfluorobutanoic acid	2017/07/10		107	%	50 - 150
			13C4-Perfluoroheptanoic acid	2017/07/10		102	%	50 - 150
			13C4-Perfluorooctanesulfonate	2017/07/10		97	%	50 - 150
			13C4-Perfluorooctanoic acid	2017/07/10		109	%	50 - 150
			13C5-Perfluorononanoic acid	2017/07/10		97	%	50 - 150
			13C5-Perfluoropentanoic acid	2017/07/10		91	%	50 - 150
			13C8-Perfluorooctane Sulfonamide	2017/07/10		75	%	50 - 150
			1802-Perfluorohexanesulfonate	2017/07/10		106	%	50 - 150
			6:2 Fluorotelomer sulfonate	2017/07/10	0.23 U, MDL=0.23		ug/kg	
			8:2 Fluorotelomer sulfonate	2017/07/10	0.32 U, MDL=0.32		ug/kg	
			Perfluorobutane Sulfonate (PFBS)	2017/07/10	0.17 U, MDL=0.17		ug/kg	
			Perfluorobutanoic acid	2017/07/10	0.23 U, MDL=0.23		ug/kg	
			Perfluorodecane Sulfonate	2017/07/10	0.23 U, MDL=0.23		ug/kg	
			Perfluorodecanoic Acid (PFDA)	2017/07/10	0.13 U, MDL=0.13		ug/kg	
			Perfluorododecanoic Acid (PFDoA)	2017/07/10	0.22 U, MDL=0.22		ug/kg	
			Perfluorononanoic Acid (PFNA)	2017/07/10	0.17 U, MDL=0.17		ug/kg	
			Perfluorooctane Sulfonamide (PFOSA)	2017/07/10	0.26 U, MDL=0.26		ug/kg	
			Perfluorotetradecanoic Acid	2017/07/10	0.11 U, MDL=0.11		ug/kg	
			Perfluorotridecanoic Acid	2017/07/10	0.12 U, MDL=0.12		ug/kg	
			Perfluoroundecanoic Acid (PFUnA)	2017/07/10	0.18 U, MDL=0.18		ug/kg	
			Perfluoroheptanoic Acid (PFHpA)	2017/07/10	0.17 U, MDL=0.17		ug/kg	

ESS Laboratory Client Project #: 1706532 Your P.O. #: B02623

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
Daten	mit	QC Type	Perfluorohexane Sulfonate (PFHxS)	2017/07/10	0.23 U,	70 Necovery	ug/kg	QC LIIIIII3
				2017/07/10	MDL=0.23		ug/ kg	
			Perfluorohexanoic Acid (PFHxA)	2017/07/10	0.19 U,		ug/kg	
				- ,-, -	MDL=0.19		0,0	
			Perfluoro-n-Octanoic Acid (PFOA)	2017/07/10	0.26 U,		ug/kg	
				- ,-, -	MDL=0.26		0,0	
			Perfluorooctane Sulfonate (PFOS)	2017/07/10	0.21 U,		ug/kg	
					MDL=0.21		0.0	
			Perfluoropentanoic Acid (PFPeA)	2017/07/10	0.18 U,		ug/kg	
					MDL=0.18			
5056239 DZ	DZU	RPD - Sample/Sample Dup	6:2 Fluorotelomer sulfonate	2017/07/10	1.3		%	30
			8:2 Fluorotelomer sulfonate	2017/07/10	30 (2)		%	30
			Perfluorobutane Sulfonate (PFBS)	2017/07/10	NC		%	30
			Perfluorobutanoic acid	2017/07/10	NC		%	30
			Perfluorodecane Sulfonate	2017/07/10	NC		%	30
			Perfluorodecanoic Acid (PFDA)	2017/07/10	13		%	30
			Perfluorododecanoic Acid (PFDoA)	2017/07/10	19		%	30
			Perfluorononanoic Acid (PFNA)	2017/07/10	NC		%	30
			Perfluorooctane Sulfonamide (PFOSA)	2017/07/10	NC		%	25
			Perfluorotetradecanoic Acid	2017/07/10	NC		%	30
			Perfluoroundecanoic Acid (PFUnA)	2017/07/10	15		%	30
			Perfluoroheptanoic Acid (PFHpA)	2017/07/10	NC		%	30
			Perfluorohexane Sulfonate (PFHxS)	2017/07/10	NC		%	30
			Perfluorohexanoic Acid (PFHxA)	2017/07/10	NC		%	30
			Perfluoro-n-Octanoic Acid (PFOA)	2017/07/10	NC		%	30
			Perfluorooctane Sulfonate (PFOS)	2017/07/10	NC		%	30
			Perfluoropentanoic Acid (PFPeA)	2017/07/10	NC		%	30
5071737 AI	AD9	Matrix Spike	13C2-Perfluoroundecanoic acid	2017/07/18		72	%	50 - 150
			Perfluorotridecanoic Acid	2017/07/18		123	%	70 - 130
			Perfluoroundecanoic Acid (PFUnA)	2017/07/18		121	%	70 - 130
5071737	AD9	Spiked Blank	13C2-Perfluoroundecanoic acid	2017/07/18		76	%	50 - 150
			Perfluorotridecanoic Acid	2017/07/18		124	%	70 - 130
			Perfluoroundecanoic Acid (PFUnA)	2017/07/18		114	%	70 - 130
5071737	AD9	Method Blank	13C2-Perfluoroundecanoic acid	2017/07/18		59	%	50 - 150
			Perfluorotridecanoic Acid	2017/07/18	0.12 U,		ug/kg	
					MDL=0.12			
			Perfluoroundecanoic Acid (PFUnA)	2017/07/18	0.18 U, MDL=0.18		ug/kg	
5071737	AD9	RPD - Sample/Sample Dup	Perfluorotridecanoic Acid	2017/07/18	NC		%	30
			Perfluoroundecanoic Acid (PFUnA)	2017/07/18	NC		%	30
5073733 AD	AD9	Matrix Spike	13C2-perfluorotetradecanoic acid	2017/07/19		63	%	50 - 150
		·	Perfluorotetradecanoic Acid	2017/07/19		120	%	70 - 130
			Perfluorotridecanoic Acid	2017/07/19		125	%	70 - 130
5073733 AD	AD9	Spiked Blank	13C2-perfluorotetradecanoic acid	2017/07/19		64	%	50 - 150
			Perfluorotetradecanoic Acid	2017/07/19		121	%	70 - 130
			Perfluorotridecanoic Acid	2017/07/19		126	%	70 - 130
5073733 AI	AD9	Method Blank	13C2-perfluorotetradecanoic acid	2017/07/19		72	%	50 - 150
			Perfluorotetradecanoic Acid	2017/07/19	0.11 U,		ug/kg	
					MDL=0.11			
			Perfluorotridecanoic Acid	2017/07/19	0.12 U, MDL=0.12		ug/kg	
5073733	٩٦٨	RPD - Sample/Sample Dup	Perfluorotetradecanoic Acid	2017/07/19			%	30
5073733	AD9	RPD - Sample/Sample Dup	Perfluorotetradecanoic Acid	2017/07/19	NC		%	30

Report Date: 2017/07/19

ESS Laboratory Client Project #: 1706532 Your P.O. #: B02623

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recoverv	UNITS	QC Limit
Button		Q0 . / pc	Perfluorotridecanoic Acid	2017/07/19	NC	<i>/////////////////////////////////////</i>	%	30
Matrix S	Spike: A	sample to which a	known amount of the analyte of interest has been	added. Used to evaluate sam	ple matrix inte	erference.		
Spiked E	Blank: A	blank matrix samp	le to which a known amount of the analyte, usually	from a second source, has be	en added. Use	ed to evaluate me	ethod accu	iracy.
Method	Blank:	A blank matrix cor	ntaining all reagents used in the analytical procedure	e. Used to identify laboratory	contaminatio	n.		
Surroga	te: A pu	re or isotopically l	abeled compound whose behavior mirrors the analy	/tes of interest. Used to evalu	ate extraction	efficiency.		
· ·	olicate RI ce <= 2x	, ,	RPD was not calculated. The concentration in the sa	ample and/or duplicate was t	oo low to perr	nit a reliable RPD	calculatio	n (absolute
(1) Rec	overy o	RPD for this par	ameter is outside control limits. The overall qua	ality control for this analysi	s meets acce	ptability criteria		

(2) Duplicate results exceeded RPD acceptance criteria. This may be due to sample heterogeneity.

Report Date: 2017/07/19

ESS Laboratory Client Project #: 1706532 Your P.O. #: B02623

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

11

Adam Robinson, Supervisor, LC/MS/MS

Brad Newman, Scientific Specialist

Colm McNamara, Senior Analyst, Liquid Chromatography

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

ESS L	aborato	ory			С	HAIN OF	CUS	STOD	Y	ESS Lab	,# T	106	572		
Division of	Thielsch En	ngineering, Inc.		Turn Tin	ne 🗡	Standard	Other				Danadia	Lingth	an	- (
185 France	es Avenue, (Cranston, RI 0	2910-2211	Regulator	ry State: MA	RI CT NH N	J NY M	E Other			Reporting	Limits			
	461-7181 F boratory.cor	Fax (401) 461-	4486			the following:(ple JSACE CT D				E	ectonic Del	verables	Excel Ac	cess (PDF)
Co. Name			10	Project #)27	Project Name		and the second second	LJ.				Í		
Contact Person	SE BGA	TTEM GAL	015		ORTE	BAN.	UN-CA	ru F	-1	sis	Ĩ				
City			State			Zip		PO #		Analysis	ALCH				
1	833 660		MA Fax. 508	53-7 71		email: Ho	3		1		SAI				
ESS Lab ID	Date	Collection Time	Grab -G	Matrix	1	mple ID	Pres	# of	Type of	Vol of	0/0				
ESS Lab ID			Composite-C	ļ			Code	Containers	Container	Container	-	_			
	6/20/17		a	5	DL-	1	NP	1	Y	250	×	_			
6	1	0915			DL-										
3		0930			DL-	3									
Y		0945			DL-	4									
5		0945			DL-	5									
6		0950			DL-	6									
7		1000			DL-	7									
8		1005		The second second second second second second second second second second second second second second second se	DL.	-8-2'									
G		1015			DL-	9									
10	Ø	1020	2	4	DL-	10	×	p	Þ	×	*				
Container Type P	-Poly G-Glass AG-	Amber Glass S-Sterile	V-VOA		Matrix: S-Soji	SD-Solid D-Sludge	WW-Wastew	ater GW-Grour	ndwater SW-S	urface Water	W-Drinking V	Vater O-Oil	W-Wipes F-	Filter	
Cooler Pres	sent	Yes	No	Internal L	Jse Only	Preservation Code		HCI, 3-H2SO4	, 4-HNO3, 5-	NaOH, 6-Me	OH, 7-Asorb	ic Acid, 8-Z	InAct, 9		
Seals Intac	tYes	No NA	x:X	Pickup	D	Sampled by	the)							
Cooler Ten	nperature:	2.31(en	1	[] Techn	ician	Comments:					\sim	4			
the second second second second second second second second second second second second second second second se	Signature, Date & Ti	ime)	Received by: (Sign	ature, Date & Ti	11-	(530	Relinquishe	d by Signature		16:52	Received by	Signature, I	Date & Time)	17 190	27
Relinguished by: (Signature, Date & Tr	1 in the second	Received by: (Sign	ature, Date & Th	me)	., 10	Relinquishe	d by: (Signature	and the second se		Received by:	(Signature, I	Date & Time)	1110	
* By circling MA-N	MCP, client acknowle	edges samples were			Please fax to	the laboratory al	changes	to Chain of	Custody		1 (White)	ab Copy			
	ordance with MADEF										2 (Yellow)				

ESS Laboratory	С	HAIN OF	CUS	STOD	Y	ESS Lab)#	F	06	53	2	
Division of Thielsch Engineering, Inc.	Turn Time	Standard	Other_				Date			42	-1	
185 Frances Avenue, Cranston, RI 02910-221	Regulatory State: MA	RI CT NH NJ	NY M	E Other			керо	rting L	mits	40		-
Tel. (401) 461-7181 Fax (401) 461-4486	Is this project for any of					E	lectoni	c Delive	erables (Excel) Ad	cess PD	SF)
www.esslaboratory.com	MA-MCP Navy L						1	T		ř-	TT	TT
Co. Name HONSLEY WITTEN GROUP	17027	Project Name	n-C1	ria # i	1	S.	5					
Contact Person City State	Address 90 Rt		-	PO #		Analysis	CM					
SANDWICH MI	1	Zip orse	3			An	AL					
Tel. 508 533 6600 Fax. 508	9338150	email: Beccolo					SN	3				
ESS Lab ID Date Collection Time Grab -G Composite	C Matrix Sa	ample ID	Pres Code	# of Containers	Type of Container	Vol of Container	Dd	A				
11 6/207 1030 a	S ARFF	BLDG 1	NP	t	8	250	4					
12 1035 G	5 ARFF	BLOG 2	Nr	1	P	250	p					
0815 4	SW KMAA		1	2	P	125ml		X				
1150 4	an the			2	P	125		X				
1310 9	an the			2	P	125		X				
1335 4	GN HW-		p	2	P	125		X				
								-				
	-							-				
							-	-				+
		المتحد متصدين										
Container Type: P-Poly G-Glass AG-Amber Glass S-Sterile V-VOA	Internal Use Only	Preservation Code:	1									
10	Pickup	Sampled by :	1-11/2-1	101, 0-112004	, 4411100, 04	-14011, 0-140			71010, 0-2			
Seals Intact Yes No NA: A		Comments:						-	0			
	[] Technician			11 001	Data altria		-	A	1	Date 0 There		
Relinquished by (Signature, Date & Time) 6 20 17 1445	Signature, Datest Time)	530 -	1		p0/17	1652	Redeiv	AVA	WWW	Date & Time	In 19	RON
	Signature, Date & Time)	F	Relinquishe	d by: (Signature	, Date & Time))	Receiv	ed by: (S	lignature, f	Date & Time)	
								1				

1

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Jesse Bean Horsley & Witten 90 Route 6A Sandwich, MA 02563

RE: Barn. On-Call #4 (17027) ESS Laboratory Work Order Number: 1710271

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director

Analytical Summary

REVIEWED By ESS Laboratory at 9:20 am, Oct 17, 2017

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

Subcontracted Analyses Maxxam Analytics - Cheektowaga, NY

PFOA

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4

ESS Laboratory Work Order: 1710271

SAMPLE RECEIPT

The following samples were received on October 11, 2017 for the analyses specified on the enclosed Chain of Custody Record.

Matrix

Soil

Soil

Soil

Lab Number 1710271-01 1710271-02 1710271-03

Sample Name Stockpile West Stockpile East Loam Pile

Analysis ş § §

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4

ESS Laboratory Work Order: 1710271

PROJECT NARRATIVE

No unusual observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4

Analytical Methods

ESS Laboratory Work Order: 1710271

CURRENT SW-846 METHODOLOGY VERSIONS

Prep Methods

1010A - Flashpoint 6010C - ICP 6020A - ICP MS 7010 - Graphite Furnace 7196A - Hexavalent Chromium 7470A - Aqueous Mercury 7471B - Solid Mercury 8011 - EDB/DBCP/TCP 8015C - GRO/DRO 8081B - Pesticides 8082A - PCB 8100M - TPH 8151A - Herbicides 8260B - VOA 8270D - SVOA 8270D SIM - SVOA Low Level 9014 - Cyanide 9038 - Sulfate 9040C - Aqueous pH 9045D - Solid pH (Corrosivity) 9050A - Specific Conductance 9056A - Anions (IC) 9060A - TOC 9095B - Paint Filter MADEP 04-1.1 - EPH / VPH

3005A - Aqueous ICP Digestion
3020A - Aqueous Graphite Furnace / ICP MS Digestion
3050B - Solid ICP / Graphite Furnace / ICP MS Digestion
3060A - Solid Hexavalent Chromium Digestion
3510C - Separatory Funnel Extraction
3520C - Liquid / Liquid Extraction
3540C - Manual Soxhlet Extraction
3541 - Automated Soxhlet Extraction
3546 - Microwave Extraction
3580A - Waste Dilution
5030B - Aqueous Purge and Trap
5030C - Aqueous Purge and Trap
5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4

ESS Laboratory Work Order: 1710271

Subcontracted Analysis

Client Sample ID: Stockpile West Date Sampled: 10/10/17 16:25 ESS Laboratory Sample ID: 1710271-01 Sample Matrix: Soil

<u>Analvte</u> PFOA	<u>Results</u> See Attached	<u>Units</u>	<u>MRL</u>	<u>Method</u>	<u>DF</u>	<u>Analyst</u>	<u>Analyzed</u>	<u>I/V</u> <u>F/V</u>
Client Sample ID: Stockpile East Date Sampled: 10/10/17 16:35				ESS Laborator Sample Matrix	• •	e ID: 171027	71-02	
<u>Analyte</u> PFOA	<u>Results</u> See Attached	<u>Units</u>	<u>MRL</u>	<u>Method</u>	<u>DF</u>	<u>Analyst</u>	<u>Analyzed</u>	<u>I/V</u> <u>F/V</u>
Client Sample ID: Loam Pile Date Sampled: 10/10/17 16:40				ESS Laborator Sample Matrix	• •	e ID: 171027	71-03	
<u>Analyte</u> PFOA	<u>Results</u> See Attached	<u>Units</u>	MRL	<u>Method</u>	<u>DF</u>	<u>Analyst</u>	Analyzed	<u>I/V</u> <u>F/V</u>

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4

ESS Laboratory Work Order: 1710271

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4

ESS Laboratory Work Order: 1710271

Notes and Definitions

- Z-08 See Attached
- ND Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- MDL Method Detection Limit
- MRL Method Reporting Limit
- LOD Limit of Detection
- LOQ Limit of Quantitation
- DL Detection Limit
- I/V Initial Volume
- F/V Final Volume
- § Subcontracted analysis; see attached report
- 1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.
- 2 Range result excludes concentrations of target analytes eluting in that range.
- 3 Range result excludes the concentration of the C9-C10 aromatic range.
- Avg Results reported as a mathematical average.
- NR No Recovery
- [CALC] Calculated Analyte
- SUB Subcontracted analysis; see attached report
- RL Reporting Limit
- EDL Estimated Detection Limit

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Horsley & Witten Client Project ID: Barn. On-Call #4

ESS Laboratory Work Order: 1710271

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories/pdf/OutofStateCommercialLaboratories.pdf

> Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

> > Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

Your P.O. #: B02623 Your Project #: 1710271 Your C.O.C. #: na

Attention:Shawn Morrell

ESS Laboratory 185 Frances Ave Cranston, RI USA 02910

> Report Date: 2017/10/16 Report #: R4785798 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B7M5459 Received: 2017/10/12, 14:44

Sample Matrix: Soil # Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Moisture	3	N/A	2017/10/12	CAM SOP-00445	Carter 2nd ed 51.2 m
PFOS and PFOA in soil by SPE/LCMS (1)	3	2017/10/13	2017/10/16	CAM SOP-00894	EPA537 m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Per- and polyfluoroalkyl substances (PFAS) identified as surrogates on the certificate of analysis represent the extracted internal standard.

U = Undetected at the limit of quantitation.

J = Estimated concentration between the EDL & RDL.

B = Blank Contamination.

Q = One or more quality control criteria failed.

E = Analyte concentration exceeds the maximum concentration level.

K = Estimated maximum possible concentration due to ion abundance ratio failure.

Your P.O. #: B02623 Your Project #: 1710271 Your C.O.C. #: na

Attention:Shawn Morrell

ESS Laboratory 185 Frances Ave Cranston, RI USA 02910

> Report Date: 2017/10/16 Report #: R4785798 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B7M5459 Received: 2017/10/12, 14:44

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Stephanie Pollen, Project Manager Email: SPollen@maxxam.ca Phone# (905) 817-5700

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Report Date: 2017/10/16

ESS Laboratory Client Project #: 1710271 Your P.O. #: B02623

RESULTS OF ANALYSES OF SOIL

Maxxam ID		FHS317	FHS318	FHS319			
Sampling Date		2017/10/10	2017/10/10	2017/10/10			
		16:25	16:35	16:40			
COC Number		na	na	na			
	UNITS	1710271-01	1710271-02	1710271-03	RDL	MDL	QC Batch
Inorganics							
Moisture	%	3.5	4.2	16	1.0	0.50	5209150
Miscellaneous Parameters							
6:2 Fluorotelomer sulfonate	ug/kg	1.4	0.52 J	0.23 U	1.0	0.23	5210438
8:2 Fluorotelomer sulfonate	ug/kg	0.32 U	0.32 U	0.32 U	1.0	0.32	5210438
Perfluorobutane Sulfonate (PFBS)	ug/kg	0.17 U	0.17 U	0.17 U	1.0	0.17	5210438
Perfluorobutanoic acid	ug/kg	0.23 U	0.23 U	0.23 U	1.0	0.23	5210438
Perfluorodecane Sulfonate	ug/kg	0.23 U	0.23 U	0.23 U	1.0	0.23	5210438
Perfluorodecanoic Acid (PFDA)	ug/kg	0.13 U	0.13 U	0.13 U	1.0	0.13	5210438
Perfluorododecanoic Acid (PFDoA)	ug/kg	0.22 U	0.22 U	0.22 U	1.0	0.22	5210438
Perfluoroheptanoic Acid (PFHpA)	ug/kg	0.17 U	0.17 U	0.17 U	1.0	0.17	5210438
Perfluorohexane Sulfonate (PFHxS)	ug/kg	0.23 U	0.23 U	0.23 U	1.0	0.23	5210438
Perfluorohexanoic Acid (PFHxA)	ug/kg	0.19 U	0.19 U	0.19 U	1.0	0.19	5210438
Perfluoro-n-Octanoic Acid (PFOA)	ug/kg	0.26 U	0.26 U	0.26 U	1.0	0.26	5210438
Perfluorononanoic Acid (PFNA)	ug/kg	0.17 U	0.17 U	0.17 U	1.0	0.17	5210438
Perfluorooctane Sulfonamide (PFOSA)	ug/kg	0.26 U	0.26 U	0.26 U	1.0	0.26	5210438
Perfluorooctane Sulfonate (PFOS)	ug/kg	0.38 J	0.39 J	0.81 J	1.0	0.21	5210438
Perfluoropentanoic Acid (PFPeA)	ug/kg	0.18 U	0.18 U	0.18 U	1.0	0.18	5210438
Perfluorotetradecanoic Acid	ug/kg	0.11 U	0.11 U	0.11 U	1.0	0.11	5210438
Perfluorotridecanoic Acid	ug/kg	0.12 U	0.12 U	0.12 U	1.0	0.12	5210438
Perfluoroundecanoic Acid (PFUnA)	ug/kg	0.18 U	0.18 U	0.18 U	1.0	0.18	5210438
Surrogate Recovery (%)							
13C2-6:2 Fluorotelomer sulfonate	%	76	83	77	N/A	N/A	5210438
13C2-8:2 Fluorotelomer sulfonate	%	77	88	77	N/A	N/A	5210438
13C2-Perfluorodecanoic acid	%	67	88	67	N/A	N/A	5210438
13C2-Perfluorododecanoic acid	%	65	80	64	N/A	N/A	5210438
13C2-Perfluorohexanoic acid	%	75	91	69	N/A	N/A	5210438
13C2-perfluorotetradecanoic acid	%	61	68	54	N/A		5210438
13C2-Perfluoroundecanoic acid	%	65	86	64	N/A	N/A	5210438
13C4-Perfluorobutanoic acid	%	77	90	74	N/A	N/A	5210438
13C4-Perfluoroheptanoic acid	%	78	88	73	, N/A		5210438
13C4-Perfluorooctanesulfonate	%	71	91	62	, N/A		5210438
13C4-Perfluorooctanoic acid	%	78	87	69	N/A	N/A	5210438
13C5-Perfluorononanoic acid	%	71	91	66	N/A	N/A	5210438
13C5-Perfluoropentanoic acid	%	79	92	74	N/A		5210438
RDL = Reportable Detection Limit					,	,	
QC Batch = Quality Control Batch							
N/A = Not Applicable							

Report Date: 2017/10/16

ESS Laboratory Client Project #: 1710271 Your P.O. #: B02623

RESULTS OF ANALYSES OF SOIL

Maxxam ID		FHS317	FHS318	FHS319			
Sampling Date		2017/10/10 16:25	2017/10/10 16:35	2017/10/10 16:40			
COC Number		na	na	na			
	UNITS	1710271-01	1710271-02	1710271-03	RDL	MDL	QC Batch
13C8-Perfluorooctane Sulfonamide	%	65	80	56	N/A	N/A	5210438
1802-Perfluorohexanesulfonate	%	70	89	70	N/A	N/A	5210438
RDL = Reportable Detection Limit							
QC Batch = Quality Control Batch							
N/A = Not Applicable							

Report Date: 2017/10/16

ESS Laboratory Client Project #: 1710271 Your P.O. #: B02623

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	FHS317 1710271-01 Soil					Collected: Shipped: Received:	2017/10/10 2017/10/12
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	5209150	N/A	2017/10/12	Prgya Panc	hal
PFOS and PFOA in soil by	SPE/LCMS	LCMS	5210438	2017/10/13	2017/10/16	Anjan Desa	i
Maxxam ID: Sample ID:	FHS318 1710271-02					Collected: Shipped:	2017/10/10
Matrix:	Soil					Received:	2017/10/12
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	5209150	N/A	2017/10/12	Prgya Panc	hal
PFOS and PFOA in soil by	SPE/LCMS	LCMS	5210438	2017/10/13	2017/10/16	Anjan Desa	i
Maxxam ID: Sample ID:	FHS319 1710271-03					Collected: Shipped:	2017/10/10
Matrix:	Soil					Received:	2017/10/12
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	5209150	N/A	2017/10/12	Prgya Panc	hal
	SPE/LCMS	LCMS	5210438	2017/10/13	2017/10/16	Anjan Desa	

ESS Laboratory Client Project #: 1710271 Your P.O. #: B02623

GENERAL COMMENTS

Results relate only to the items tested.

ESS Laboratory Client Project #: 1710271 Your P.O. #: B02623

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
5209150	AUP	RPD - Sample/Sample Dup	Moisture	2017/10/12	2.1		%	20
5210438	AD9	Matrix Spike(FHS318)	13C2-6:2 Fluorotelomer sulfonate	2017/10/16		70	%	50 - 150
			13C2-8:2 Fluorotelomer sulfonate	2017/10/16		81	%	50 - 150
			13C2-Perfluorodecanoic acid	2017/10/16		75	%	50 - 150
			13C2-Perfluorododecanoic acid	2017/10/16		68	%	50 - 150
			13C2-Perfluorohexanoic acid	2017/10/16		78	%	50 - 150
			13C2-perfluorotetradecanoic acid	2017/10/16		60	%	50 - 150
			13C2-Perfluoroundecanoic acid	2017/10/16		72	%	50 - 150
			13C4-Perfluorobutanoic acid	2017/10/16		83	%	50 - 150
			13C4-Perfluoroheptanoic acid	2017/10/16		80	%	50 - 150
			13C4-Perfluorooctanesulfonate	2017/10/16		81	%	50 - 150
			13C4-Perfluorooctanoic acid	2017/10/16		80	%	50 - 150
			13C5-Perfluorononanoic acid	2017/10/16		79	%	50 - 150
			13C5-Perfluoropentanoic acid	2017/10/16		87	%	50 - 150
			13C8-Perfluorooctane Sulfonamide	2017/10/16		67	%	50 - 150
			1802-Perfluorohexanesulfonate	2017/10/16		84	%	50 - 150
			6:2 Fluorotelomer sulfonate	2017/10/16		112	%	70 - 130
			8:2 Fluorotelomer sulfonate	2017/10/16		99	%	70 - 130
			Perfluorobutane Sulfonate (PFBS)	2017/10/16		99	%	70 - 130
			Perfluorobutanoic acid	2017/10/16		102	%	70 - 130
			Perfluorodecane Sulfonate	2017/10/16		105	%	70 - 130
			Perfluorodecanoic Acid (PFDA)	2017/10/16		109	%	70 - 130
			Perfluorododecanoic Acid (PFDoA)	2017/10/16		106	%	70 - 130
			Perfluorononanoic Acid (PFNA)	2017/10/16		108	%	70 - 130
			Perfluorooctane Sulfonamide (PFOSA)	2017/10/16		104	%	70 - 130
			Perfluorotetradecanoic Acid	2017/10/16		92	%	70 - 130
			Perfluorotridecanoic Acid	2017/10/16		113	%	70 - 130
			Perfluoroundecanoic Acid (PFUnA)	2017/10/16		108	%	70 - 130 70 - 130
			Perfluoroheptanoic Acid (PFHpA)	2017/10/16		106	%	70 - 130
			Perfluorohexane Sulfonate (PFHxS)	2017/10/16		94	%	70 - 130
			Perfluorohexanoic Acid (PFHxA)	2017/10/16		109	%	70 - 130
			Perfluoro-n-Octanoic Acid (PFOA)	2017/10/16		103	%	70 - 130 70 - 130
			Perfluorooctane Sulfonate (PFOS)	2017/10/16		100	%	70 - 130
			Perfluoropentanoic Acid (PFPeA)	2017/10/16		96	%	70 - 130
5210438	AD9	Matrix Spike DUP(FHS318)	13C2-6:2 Fluorotelomer sulfonate	2017/10/16		66	%	50 - 150
5210456	AD9		13C2-8:2 Fluorotelomer sulfonate			71	%	50 - 150 50 - 150
			13C2-Perfluorodecanoic acid	2017/10/16 2017/10/16		71 81	%	50 - 150 50 - 150
			13C2-Perfluorododecanoic acid			76	%	
				2017/10/16				50 - 150
			13C2-Perfluorohexanoic acid	2017/10/16		81 63	%	50 - 150 50 - 150
			13C2-perfluorotetradecanoic acid 13C2-Perfluoroundecanoic acid	2017/10/16		03 77	%	50 - 150 50 - 150
			13C4-Perfluorobutanoic acid	2017/10/16		82	%	
				2017/10/16			%	50 - 150
			13C4-Perfluoroheptanoic acid	2017/10/16		78	%	50 - 150
			13C4-Perfluorooctanesulfonate	2017/10/16		78	%	50 - 150
			13C4-Perfluorooctanoic acid	2017/10/16		83	%	50 - 150
			13C5-Perfluorononanoic acid	2017/10/16		77	%	50 - 150
			13C5-Perfluoropentanoic acid	2017/10/16		82	%	50 - 150
			13C8-Perfluorooctane Sulfonamide	2017/10/16		68	%	50 - 150
			1802-Perfluorohexanesulfonate	2017/10/16		67	%	50 - 150
			6:2 Fluorotelomer sulfonate	2017/10/16		108	%	70 - 130
			8:2 Fluorotelomer sulfonate	2017/10/16		106	%	70 - 130
			Perfluorobutane Sulfonate (PFBS)	2017/10/16		119	%	70 - 130
			Perfluorobutanoic acid	2017/10/16		96	%	70 - 130
			Perfluorodecane Sulfonate	2017/10/16		99	%	70 - 130

ESS Laboratory Client Project #: 1710271 Your P.O. #: B02623

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			Perfluorodecanoic Acid (PFDA)	2017/10/16		96	%	70 - 130
			Perfluorododecanoic Acid (PFDoA)	2017/10/16		95	%	70 - 130
			Perfluorononanoic Acid (PFNA)	2017/10/16		104	%	70 - 130
			Perfluorooctane Sulfonamide (PFOSA)	2017/10/16		98	%	70 - 130
			Perfluorotetradecanoic Acid	2017/10/16		101	%	70 - 130
			Perfluorotridecanoic Acid	2017/10/16		109	%	70 - 130
			Perfluoroundecanoic Acid (PFUnA)	2017/10/16		100	%	70 - 130
			Perfluoroheptanoic Acid (PFHpA)	2017/10/16		106	%	70 - 130
			Perfluorohexane Sulfonate (PFHxS)	2017/10/16		118	%	70 - 130
			Perfluorohexanoic Acid (PFHxA)	2017/10/16		99	%	70 - 130
			Perfluoro-n-Octanoic Acid (PFOA)	2017/10/16		95	%	70 - 130
			Perfluorooctane Sulfonate (PFOS)	2017/10/16		101	%	70 - 130
			Perfluoropentanoic Acid (PFPeA)	2017/10/16		98	%	70 - 130
5210438	AD9	MS/MSD RPD	6:2 Fluorotelomer sulfonate	2017/10/16	4.1		%	30
			8:2 Fluorotelomer sulfonate	2017/10/16	6.4		%	30
			Perfluorobutane Sulfonate (PFBS)	2017/10/16	18		%	30
			Perfluorobutanoic acid	2017/10/16	5.7		%	30
			Perfluorodecane Sulfonate	2017/10/16	5.4		%	30
			Perfluorodecanoic Acid (PFDA)	2017/10/16	13		%	30
			Perfluorododecanoic Acid (PFDoA)	2017/10/16	11		%	30
			Perfluorononanoic Acid (PFNA)	2017/10/16	3.7		%	30
			Perfluorooctane Sulfonamide (PFOSA)	2017/10/16	6.3		%	25
			Perfluorotetradecanoic Acid	2017/10/16	9.8		%	30
			Perfluorotridecanoic Acid	2017/10/16	4.0		%	30
			Perfluoroundecanoic Acid (PFUnA)	2017/10/16	7.0		%	30
			Perfluoroheptanoic Acid (PFHpA)	2017/10/16	0.29		%	30
			Perfluorohexane Sulfonate (PFHxS)	2017/10/16	22		%	30
			Perfluorohexanoic Acid (PFHxA)	2017/10/16	9.8		%	30
			Perfluoro-n-Octanoic Acid (PFOA)	2017/10/16	8.2		%	30
			Perfluorooctane Sulfonate (PFOS)	2017/10/16	0.53		%	30
			Perfluoropentanoic Acid (PFPeA)	2017/10/16	2.4		%	30
5210438	AD9	Spiked Blank	13C2-6:2 Fluorotelomer sulfonate	2017/10/16		83	%	50 - 150
			13C2-8:2 Fluorotelomer sulfonate	2017/10/16		83	%	50 - 150
			13C2-Perfluorodecanoic acid	2017/10/16		76	%	50 - 150
			13C2-Perfluorododecanoic acid	2017/10/16		72	%	50 - 150
			13C2-Perfluorohexanoic acid	2017/10/16		84	%	50 - 150
			13C2-perfluorotetradecanoic acid	2017/10/16		62	%	50 - 150
			13C2-Perfluoroundecanoic acid	2017/10/16		74	%	50 - 150
			13C4-Perfluorobutanoic acid	2017/10/16		84	%	50 - 150
			13C4-Perfluoroheptanoic acid	2017/10/16		85	%	50 - 150
			13C4-Perfluorooctanesulfonate	2017/10/16		86	%	50 - 150
			13C4-Perfluorooctanoic acid	2017/10/16		81	%	50 - 150
			13C5-Perfluorononanoic acid	2017/10/16		81	%	50 - 150
			13C5-Perfluoropentanoic acid	2017/10/16		90	%	50 - 150
			13C8-Perfluorooctane Sulfonamide	2017/10/16		69	%	50 - 150
			1802-Perfluorohexanesulfonate	2017/10/16		90	%	50 - 150
			6:2 Fluorotelomer sulfonate	2017/10/16		110	%	70 - 130
			8:2 Fluorotelomer sulfonate	2017/10/16		109	%	70 - 130
			Perfluorobutane Sulfonate (PFBS)	2017/10/16		95	%	70 - 130
			Perfluorobutanoic acid	2017/10/16		106	%	70 - 130
			Perfluorodecane Sulfonate	2017/10/16		114	%	70 - 130
			Perfluorodecanoic Acid (PFDA)	2017/10/16		112	%	70 - 130
			Perfluorododecanoic Acid (PFDoA)	2017/10/16		113	%	70 - 130
			Perfluorononanoic Acid (PFNA)	2017/10/16		108	%	70 - 130

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

ESS Laboratory Client Project #: 1710271 Your P.O. #: B02623

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			Perfluorooctane Sulfonamide (PFOSA)	2017/10/16		109	%	70 - 130
			Perfluorotetradecanoic Acid	2017/10/16		113	%	70 - 130
			Perfluorotridecanoic Acid	2017/10/16		128	%	70 - 130
			Perfluoroundecanoic Acid (PFUnA)	2017/10/16		112	%	70 - 130
			Perfluoroheptanoic Acid (PFHpA)	2017/10/16		104	%	70 - 130
			Perfluorohexane Sulfonate (PFHxS)	2017/10/16		96	%	70 - 130
			Perfluorohexanoic Acid (PFHxA)	2017/10/16		107	%	70 - 130
			Perfluoro-n-Octanoic Acid (PFOA)	2017/10/16		108	%	70 - 130
			Perfluorooctane Sulfonate (PFOS)	2017/10/16		99	%	70 - 130
			Perfluoropentanoic Acid (PFPeA)	2017/10/16		100	%	70 - 130
5210438	AD9	Method Blank	13C2-6:2 Fluorotelomer sulfonate	2017/10/16		88	%	50 - 150
			13C2-8:2 Fluorotelomer sulfonate	2017/10/16		78	%	50 - 150
			13C2-Perfluorodecanoic acid	2017/10/16		77	%	50 - 150
			13C2-Perfluorododecanoic acid	2017/10/16		73	%	50 - 150
			13C2-Perfluorohexanoic acid	2017/10/16		74	%	50 - 150
			13C2-perfluorotetradecanoic acid	2017/10/16		58	%	50 - 150
			13C2-Perfluoroundecanoic acid	2017/10/16		72	%	50 - 150
			13C4-Perfluorobutanoic acid	2017/10/16		78	%	50 - 150
			13C4-Perfluoroheptanoic acid	2017/10/16		80	%	50 - 150
			13C4-Perfluorooctanesulfonate	2017/10/16		71	%	50 - 150
			13C4-Perfluorooctanoic acid	2017/10/16		80	%	50 - 150
			13C5-Perfluorononanoic acid	2017/10/16		77	%	50 - 150
			13C5-Perfluoropentanoic acid	2017/10/16		78	%	50 - 150
			13C8-Perfluorooctane Sulfonamide	2017/10/16		61	%	50 - 150
			1802-Perfluorohexanesulfonate	2017/10/16		80	%	50 - 150
			6:2 Fluorotelomer sulfonate	2017/10/16	0.23 U, MDL=0.23		ug/kg	
			8:2 Fluorotelomer sulfonate	2017/10/16	0.32 U, MDL=0.32		ug/kg	
			Perfluorobutane Sulfonate (PFBS)	2017/10/16	0.17 U, MDL=0.17		ug/kg	
			Perfluorobutanoic acid	2017/10/16	0.23 U, MDL=0.23		ug/kg	
			Perfluorodecane Sulfonate	2017/10/16	0.23 U, MDL=0.23		ug/kg	
			Perfluorodecanoic Acid (PFDA)	2017/10/16	0.13 U, MDL=0.13		ug/kg	
			Perfluorododecanoic Acid (PFDoA)	2017/10/16	0.22 U, MDL=0.22		ug/kg	
			Perfluorononanoic Acid (PFNA)	2017/10/16	0.17 U, MDL=0.17		ug/kg	
			Perfluorooctane Sulfonamide (PFOSA)	2017/10/16	0.26 U, MDL=0.26		ug/kg	
			Perfluorotetradecanoic Acid	2017/10/16	0.11 U, MDL=0.11		ug/kg	
			Perfluorotridecanoic Acid	2017/10/16	0.12 U, MDL=0.12		ug/kg	
			Perfluoroundecanoic Acid (PFUnA)	2017/10/16	0.18 U, MDL=0.18		ug/kg	
			Perfluoroheptanoic Acid (PFHpA)	2017/10/16	0.17 U, MDL=0.17		ug/kg	
			Perfluorohexane Sulfonate (PFHxS)	2017/10/16	0.23 U, MDL=0.23		ug/kg	

ESS Laboratory Client Project #: 1710271 Your P.O. #: B02623

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			Perfluorohexanoic Acid (PFHxA)	2017/10/16	0.19 U, MDL=0.19		ug/kg	
			Perfluoro-n-Octanoic Acid (PFOA)	2017/10/16	0.26 U, MDL=0.26		ug/kg	
			Perfluorooctane Sulfonate (PFOS)	2017/10/16	0.21 U, MDL=0.21		ug/kg	
			Perfluoropentanoic Acid (PFPeA)	2017/10/16	0.18 U, MDL=0.18		ug/kg	
Matrix Sp	oike: A s	ample to which a kr	nown amount of the analyte of interest has been add	led. Used to evaluate sar	nple matrix inter	ference.		
Spiked Bl	lank: A b	lank matrix sample	to which a known amount of the analyte, usually fro	m a second source, has b	een added. Use	d to evaluate me	ethod accu	iracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

ESS Laboratory Client Project #: 1710271 Your P.O. #: B02623

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Eve 6 Eva Pranji

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Aullinlew

Sin Chii Chia, Scientific Services

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

ESS Laboratory	CHAIN OF CUSTODY ESS Lab # 1710271			
ESS Laboratory	Turn Time Standard Other WOH (3			
Division of Thielsch Engineering, Inc.	Regulatory State: NA RI CT NH NJ NY ME Other	Reporting Limits - 0000 t		
185 Frances Avenue, Cranston RI 02910-2211 Tel. (401)461-7181 Fax (401)461-4486	Is this project for any of the following:(please circle) MA-MCP Navy USACE CT DEP Other	Electonic Deliverables		
www.esslaboratory.com	Project # Project Name 17027 BANN. 01 CAU			
HURSNY MITER GRENP				
Contact Person J BAM	BAMSPARY, MUMICIAN AR	font is i		
City Stat	Proj. Location BAMSPARSY MUMICIAN AR DMCH Zip 02583 PO# DMCH 27673 F			
Tel. 508 8376600 email: 16	sean@horsley witten. com	? [?		
ESS Lab ID Date Collection Time Compos	-G Matrix Sample ID Pres #	of Type of Vol of L and Antonia ainers Container		
1 10/10/17 1625 4	Soll STOCKPILE WEST - 1	P X		
2. 1 1635 G	SUIL STUCKPING GAST - 1	l ×		
3 (640 4	SUL LOAMPILS - 1	l X		
	1000 701	e X		
80 1645 4	MUNDONS ATT D CO			
Container Type: P-Poly G-Glass AG-Amber Glass S-Sterile V-VOA		Groundwater SW-Surface Water DW-Drinking Water O-Oil W-Wipes F-Filter		
Cooler PresentYesNo		H2SO4, 4-HNO3, 5-NaOH, 6-MeOH, 7-Asorbic Acid, 8-ZnAct, 9		
Seals Intact YesNo NA:	Sampled by: VESSE SEAN			
Cooler Temperaturé: 5./5. Tou	Comments:	2		
Relinquished for (Bignature Date & Time) Received	by: (Signature, Date & Time) 1245 Relinquished by: (S	Signature, Date & Time) Keceived by: (Signature/Date & Time) Keceived by: (Signature/Date & Time) Keceived by: (Signature/Date & Time)		
Relinquished by: (Signature, Date & Time) Received	by: (Signature, Date & Time) Relinquished by: (S	Signature, Date & Time) Received by (Signature, Date & Time) .		
 By circling MA-MCP, client acknowledges sampels were 	Please fax to the laboratory all changes to Chair			

Report Method Blank & Laboratory Control Sample Results

collected in accordance with MADEP CAM VIIA

AFFF Information

CHEMGUARD C306-MS 3% AFFF Concentrate

Description

CHEMGUARD C306-MS 3% AFFF (Aqueous Film-Forming Foam) Concentrate combines fluoro- and hydrocarbon-surfactant technology to provide superior fire and vapor suppression for Class B hydrocarbon fuel fires. This synthetic foam concentrate is intended for firefighting applications at 3% solution in fresh, salt, or hard water.

CHEMGUARD C306-MS foam solution utilizes three suppression mechanisms for rapid fire knockdown and enhanced burnback resistance:

- The foam blanket blocks oxygen supply to the fuel.
- Liquid drains from the foam blanket and forms an aqueous film that suppresses fuel vapor and seals the fuel surface.
- The water content of the foam solution produces a cooling effect for additional fire suppression.

TYPICAL PHYSIOCHEMICAL PROPERTIES AT 77 °F (25 °C)

Appearance	Pale yellow liquid		
Density	1.02 ± 0.02 g/ml		
рН	7.0 – 8.5		
Refractive Index	1.3655 ± 0.0020		
Viscosity	3.25 ± 1.0 cSt*		
Spreading Coefficient	3.0 minimum at 3%		
Pour Point	27 °F (-3 °C)		
Freeze Point	27 °F (-3 °C)		
*Cannon-Fenske viscometer at 25 °C			

Application

CHEMGUARD C306-MS 3% AFFF Concentrate is intended for use on Class B hydrocarbon fuel fires having low water solubility such as crude oils, gasolines, diesel fuels, and aviation fuels. It is not suitable for use on polar fuels having appreciable water solubility, such as methyl and ethyl alcohol, acetone, and methyl ethyl ketone.

The concentrate has excellent wetting properties that can effectively combat Class A fires as well. It may also be used in conjunction with dry chemical agents to provide even greater fire suppression performance.

CHEMGUARD C306-MS Concentrate is ideal for fixed and emergency response firefighting systems designed to protect naval and aviation assets. Typical applications include:

- Military and civilian aircraft facilities
- Crash fire rescue (per US DOT FAA AC No. 150/5210-6D)
- On-board marine/naval fire suppression systems
- Storage tanks
- Docks/marine tankers

009787

Approvals, Listings, and Standards

CHEMGUARD C306-MS 3% AFFF Concentrate is approved, listed, qualified under, or meets the requirements of the following specifications and standards:

- US Department of Defense Military Specification
 - MIL-F-24385F: Fire Extinguishing Agent, Aqueous Film-Forming Foam (AFFF) Liquid Concentrate for Fresh and Sea Water.
- Underwriters Laboratories Inc. (UL)
 - UL Standard 162, Foam Liquid Concentrates
 - Fresh and Sea Water
- National Fire Protection Association (NFPA)
 - NFPA 403, Standard for Aircraft Rescue and Fire-Fighting Services at Airports
 - NFPA 409, Standard on Aircraft Hangars
 - NFPA 412, Standard for Evaluating Aircraft Rescue and Fire-Fighting Foam Fire Equipment
 - NFPA 414, Standard for Aircraft Rescue and Fire-Fighting Vehicles
 - NFPA 418, Standard for Heliports

Please contact Tyco Fire Protection Products Technical Services and/or refer to listing agency for current product and compatible hardware listings.

The environmentally-mindful CHEMGUARD C306-MS Concentrate formulation contains short-chain, C-6 fluoro-

chemicals manufactured using a telomer-based process. The telomer process produces no PFOS, and these C-6 materials do not breakdown to yield PFOA. The fluorochemicals used in the concentrate meet the goals of the U.S. Environmental Protection Agency 2010/15 PFOA Stewardship Program.

Foaming Properties

CHEMGUARD C306-MS 3% AFFF Concentrate may be effectively applied using most conventional foam discharge equipment at 3% dilution with fresh, salt, or hard water. For optimum performance, water hardness should not exceed 500 ppm expressed as calcium and magnesium.

Because of the low energy required to create foam with CHEMGUARD C306-MS Concentrate, the foam solution may be applied with aspirating and non-aspirating discharge devices. Aspirating discharge devices typically produce expansion ratios from 3.5:1 to 10:1, depending on the type of device and the flow rate. Non-aspirating devices, such as handline water fog/stream nozzles or standard sprinkler heads, typically produce expansion ratios from 2:1 to 4:1. Medium-expansion discharge devices typically produce expansion ratios from 20:1 to 60:1.

TYPICAL FOAM CHARACTERISTICS** (Fresh and Sea Water)

Proportioning Rate	3%
Expansion Ratio LE	9.5
25% Drain Time (min:sec)	3:30
50% Drain Time (min:sec)	5:45
**per EN 1568-3, 2008 protocol	

Proportioning

CHEMGUARD C306-MS 3% AFFF Concentrate can be correctly proportioned using most conventional, properly calibrated, in-line proportioning equipment such as:

- Balanced and in-line balanced pressure pump proportioners
- Balanced pressure bladder tanks and ratio flow controllers
- Around-the-pump type proportioners
- Fixed or portable in-line venturi type proportioners
- Handline nozzles with fixed eductor/pick-up tubes

For immediate use: The concentrate may also be diluted with fresh or sea water to a 3% pre-mix solution.

For delayed use: Consult Technical Services for guidance regarding suitability of a pre-mix solution (fresh water only).

Materials of Construction Compatibility

CHEMGUARD C306-MS Concentrate compatibility with HDPE has been successfully evaluated using ASTM D1693-70 protocol under UL-162 standard. Concentrate corrosion studies with cold-rolled carbon steel (UNS G10100), 90-10 copper-nickel (UNS C70600), 70-30 nickel-copper (UNC N04400), bronze (UNS C90500), and CRES steel (UNS S30400) have been successfully completed per ASTM E527 protocol under MIL-F-24385F specification.

To avoid corrosion, galvanized pipe and fittings should never be used in contact with undiluted concentrate. Please refer to Technical Bulletin No. 59 for recommendations and guidance regarding compatibility of CHEMGUARD concentrates with common materials of construction in the firefighting foam industry.

Storage and Handling

CHEMGUARD C306-MS 3% AFFF Concentrate should be stored in the original supplied package (HDPE totes, drums, or pails) or in the foam system equipment recommended by Technical Services. The product should be maintained within the recommended 35 °F to 120 °F (2 °C to 49 °C) operational temperature range. If the concentrate freezes during transport or storage, full product serviceability can be restored upon thaw with gentle re-mixing.

Factors affecting the foam concentrate long-term effectiveness include temperature exposure and cycling, storage container, air exposure, evaporation, dilution, and contamination. The effective life of CHEMGUARD C306-MS Concentrate can be maximized through optimal storage conditions and proper handling.

CHEMGUARD foam concentrates have demonstrated effective firefighting performance with contents stored in the original package under proper conditions for more than 10 years.

CHEMGUARD C306-MS 3% AFFF Concentrate has been successfully evaluated by the US Naval Sea Systems Command for prolonged compatibility with other 3% AFFF concentrates qualified under MIL-F-24385F specification.

- Mixing with foam concentrates not vetted by MIL-F-24385F is not recommended.
- For immediate incident response, it is appropriate to use the concentrate in conjunction with comparable 3% AFFF products.

Inspection

CHEMGUARD C306-MS 3% AFFF Concentrate should be inspected periodically per NFPA 11 "Standard for Low-, Medium-, and High-Expansion Foam," EN 13565-2 "Foam System Standard," or other relevant standard. A representative concentrate sample should be sent to Tyco Fire Protection Products Foam Analytical Services or other qualified laboratory for quality analysis per the applicable standard. An annual inspection and sample analysis is typically sufficient, unless the product has been exposed to unusual conditions.

Ordering Information

Concentrate is available in commercial packaging only under CHEMGUARD C306-MS-C product designation and is not available for direct, contract government acquisition (per MIL-F-24385F packaging provision). Concentrate is available in pails, drums, totes or bulk shipment, with pail and drum containers being UL-162 compliant.

Part No.	Description	Shipping Weight	Cube
770809	Pail	45 lb	1.25 ft³
	5 gal (19 L)	(20.4 kg)	(0.0353 m³)
770810	Drum	495 lb	11.83 ft³
	55 gal (208 L)	(224.5 kg)	(0.3350 m³)
770811	Tote	2463 lb	50.05 ft³
	265 gal (1000 L)	(1117 kg)	(1.42 m³)

Safety Data Sheet (SDS) available at www.chemguard.com

Note: The converted metric values in this document are provided for dimensional reference only and do not reflect an actual measurement.

CHEMGUARD, and the product names listed in this material are marks and/ or registered marks. Unauthorized use is strictly prohibited.

Chemguard Specialty Chemical and Fire Suppression Products

An Environmental Statement

Fluorine-containing organic surfactants, or fluorosurfactants, are used in everyday consumer and industrial products such as paints, waxes, cleaners, polishes, adhesives, inks and, notably, fire-fighting foams. There are no known substitutes that have the same functionality and outstanding performance characteristics. Often, fluorosurfactant products are misunderstood to be made from perfluorooctanoic acid (PFOA) or perfluorooctane sulfonate (PFOS), when in fact there are a large number of different types of fluorosurfactants in use.

Chemguard Specialty Chemical and Fire Suppression Products contain no significant levels of PFOA or PFOS. Neither PFOA nor PFOS is an intentional ingredient in any Chemguard products.

Over the past decade or so, there has been increasing concern about products that contain PFOA or PFOS. Both are thought to be persistent in the environment, bioaccumulative, and potentially toxic. The US Environmental Protection Agency became aware in the late 1990's that PFOS was found at very low levels in blood samples representing the general population.¹ However, studies show that blood levels have been declining in the past decades.² PFOA and PFOS are produced by the electrochemical fluorination (ECF) process practiced by several companies within the US and abroad, although, this production process is in decline. As a business decision based on precaution, 3M ceased commercial production of PFOS in 2002.³

However, given the scientific uncertainties regarding exposure routes and human health effects, the EPA does not believe there is any reason for consumers to stop using any consumer or industrial related products because of concerns about PFOA.¹ The limited, but still existing, stocks of such products are still allowed for use until supplies are exhausted.⁴ Despite the low risks, the precautionary principle (i.e., caution due to uncertainty) requires that action be taken to further minimize any potential adverse effects these substances may pose. In 2006, the EPA initiated its "2010/15 PFOA Stewardship Program" in which industrial participants agree, in summary, to (1) reduce by 95% the product content and emissions of PFOA and precursor materials by 2010, and (2) eliminate such by 2015.

To distinguish PFOA and PFOS from fluorosurfactants that are in common use, it is necessary to have a sense of the chemical structures involved. Both PFOA and PFOS molecules contain a chain of 8 carbon atoms in which all the typical hydrogen atoms bonded to the carbons are substituted with fluorine atoms.⁵ This chemical group is generally referred to as a "C8 perfluoroalkyl chain," or simply as "C8". The fluorine-carbon bond, also found in Teflon®⁶

products, is very strong, making the molecule resistant to degradation and adhesion. The C8 chain length has been preferred for fluorosurfactants because it gives optimum performance to a large number of product properties. Due to its common use, it has also received the most scrutiny, as mentioned above. The response by manufacturers, driven by EPA and other such regulatory authorities, has been to shift production to C6-based substances, which cannot degrade to C8. The EPA's 2010/15 PFOA Stewardship Program applies to all potential PFOA precursors, which includes C8 and longer chain lengths.

Furthermore, fluorosurfactants today are based on an entirely different production process, known as telomerization, as opposed to the ECF process mentioned above. Telomerization chemistry does not use or produce PFOS, however trace levels of PFOA may result as a byproduct. As a class, however, telomerization products have been shown in EPA studies to be neither toxic nor bioaccumulative.⁷ Fluorosurfactants based on C6 telomerization chemistry cannot degrade into PFOA or PFOS.⁸

All Chemguard fluorosurfactants are derived from the telomerization process and are therefore substantially free of both PFOA and PFOS. Only trace levels of PFOA are present, and these originate as minor impurities in the raw materials that Chemguard relies on, as mentioned. At present, Chemguard Specialty Chemical products typically contain less than 5 ppm PFOA. As a practice, fluorosurfactant use in Fire Suppression foams is minimized by synergistic formulation with non-fluorinated surfactants and other components to provide maximum effectiveness. Therefore, Chemguard Fire Suppression foams typically contain less than 1 ppm PFOA. Chemguard is a participant in the EPA 2010/15 PFOA Stewardship Program and dedicated to ultimately eliminating C8 and longer chain chemistry from all products. As our conversion proceeds toward C6 chemistry, the PFOA level in our products is expected to fall well below 1 ppm, approaching the lower ppb level.

Chemguard is a conscientious and technology-driven company with a dedication to safety and product stewardship. We share the environmental concerns expressed by our customers and support the progressing regulatory environment in which we operate. We have the research, production and sales capabilities to respond with superior products that meet or exceed both our customers' expectations and our environmental responsibilities.

¹ Source: www.epa.gov/oppt/pfoa/pubs/pfoainfo.htm.

² (a) Environmental Health Perspectives, v. 113, n. 5, May 2005,

⁽b) Source: www.cdc.gov/exposurereport/perfluorinated_compounds2.htm.

³ Source: solutions.3m.com/wps/portal/3M/en_US/PFOS/PFOA/Information/Action.

⁴ EU and Canada regulations specify deadlines for use.

⁵ PFOA contains a 7 carbon perfluoroalkyl group, with the organic acid functionality representing the 8th carbon.

⁶ Registered trademark of DuPont.

⁷ Industrial Fire Journal, Sept. 2007, p. 26.

⁸ International Fire Protection, August 2008, p. 29.

Tier Classification Legal Notice

CAP MEDI	E COD A GROUP	Order Confirma	ation	
Ad Order Number	<u>Customer</u>		PO Number	
0000605375	HORSLEY WITTEN GI	ROUP INC.		
Sales Rep.	Customer Account		Ordered By	
mcdermottf	600042652		Trisha Rood	
	<u>Customer Address</u> 90 ROUTE 6A		Customer Fax	
	SANDWICH MA 02563	3 USA	Customer EMail	
	Customer Phone 508-833-6600			
Total Amount	Payment Method	Payment Amount	Amount Due	
\$195.99		\$0.00	\$195.99	
Ad Number	<u>Pick Up</u>	<u>Placement</u>	Position	
0000605375-01		Legals CC - CLS	Legal Ads C-Legal	
<u>Run Dates</u> 11/13/2017		Classification: Legal A	ds CLS	

NOTICE OF TIER CLASSIFICATION BARNSTABLE MUNICIPAL AIRPORT 242 BARNSTABLE ROAD, HYANNIS, MASSACHUSETTS RELEASE TRACKING NUMBER 4-24672

A release of oil and/or hazardous materials has occurred at this lo-cation, which is a disposal site as defined by M.G.L. c. 21E, § 2 and the Massachusetts Con-tingency Plan, 310 CMR 40.0000. To evaluate the release, a Phase I Initial Site Investiga-tion was performed pursuant to 310 CMR 40.0480. The site has been classified as TIER I pursuant to 310 CMR 40.0500. On November 10, 2017, the Barnstable Municipal Airport management filed a TIER I Classification Submittal with the Department of Environmental Protection (MassDEP). To obtain more information on this disposal site, please contact Horsley Witten Group, Inc., 90 Route 6A, Sandwich, Massachusetts 02563, (508) 833-6600. The Tier Classification Submittal and the disposal site file can be viewed at MassDEP website using Release Tracking Number (RTN) 4-26347 at

(RTN) 4-26347 at http://public.dep.state.ma.us/SearchableSites2/Search.aspx or at MassDEP, Southeast Regional Office, 20 Riverside Drive, Lakeville, Massachusetts, 02347, (508) 946-2700. Additional public involve-ment opportunities are available under 310 CMR 40.1403(9) and 310 CMR 40.1404. 11/13/17